Processing math: 100%
Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 323-335    DOI: 10.11900/0412.1961.2023.00034
  研究论文 本期目录 | 过刊浏览 |
聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为
王旗涛1, 李艳芬2,3(), 张家榕2,3, 李尧志1, 付海阳1, 李新乐1, 严伟2,3, 单以银2,3
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature
WANG Qitao1, LI Yanfen2,3(), ZHANG Jiarong2,3, LI Yaozhi1, FU Haiyang1, LI Xinle1, YAN Wei2,3, SHAN Yiyin2,3
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
Qitao WANG, Yanfen LI, Jiarong ZHANG, Yaozhi LI, Haiyang FU, Xinle LI, Wei YAN, Yiyin SHAN. Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature[J]. Acta Metall Sin, 2025, 61(2): 323-335.

全文: PDF(5526 KB)   HTML
摘要: 

在现有研究中,低活化9Cr-ODS钢虽然具有优异的高温性能,但其低周疲劳性能及微观组织演变规律尚未全面揭示,本工作旨在揭示其在不同应变幅下的循环响应和裂纹扩展特性。采用应变控制测试方法,研究了低活化9Cr-ODS钢在0.3%~0.8%应变幅范围内的室温低周疲劳性能,包括循环应力响应曲线、滞后回线、应变幅与寿命以及应力幅与塑性应变的关系,给出了相应的疲劳参数,并分析了疲劳过程中微观组织演变、疲劳断口形貌及裂纹扩展特性等。结果表明,9Cr-ODS钢的循环应力响应行为与应变幅有关。随应变幅增加,材料的峰值拉应力增加,疲劳寿命降低,循环应变-寿命满足Coffin-Manson关系。9Cr-ODS钢在所有应变幅下未出现明显的循环硬化,但在0.5%~0.8%较高应变幅范围内发生了一定的循环软化。微观组织分析表明,随循环应变幅增加,亚结构发生了回复,位错密度降低,平均晶粒尺寸及大角度晶界占比逐渐增加,从而导致9Cr-ODS钢的循环软化。疲劳裂纹起源于样品表面,但裂纹源附近均未发现明显的夹杂物或析出相。裂纹以穿晶方式扩展,9Cr-ODS钢细的原始奥氏体晶界及亚晶界对裂纹扩展具有强烈的抑制作用。此外,在相同低应变幅且不降低循环疲劳寿命条件下,9Cr-ODS钢所能承受的峰值拉应力达到低活化铁素体/马氏体钢的2倍,显示出较优越的低周疲劳强度。

关键词 ODS钢低周疲劳疲劳寿命微观组织断裂特征    
Abstract

Adequate studies have not been conducted on the low cycle fatigue properties of oxide dispersion strengthened (ODS) steels that are typically used for fusion reactors worldwide. Moreover, the majority of the fatigue properties are examined with a small sample size due to the restricted manufacturing capacity, which is insufficient for determining the comprehensive properties of bulk materials. Research on the fatigue properties of Chinese ODS steels was conducted recently. However, it is quite uncommon to report the fatigue properties of self-produced 9Cr-ODS steel. Consequently, this work is the first to examine the effect of a cyclic strain on the low cycle fatigue behavior of a representative low-activation 9Cr-ODS martensitic steel. Hence, the strain control test method was employed here in a strain amplitude range of 0.3%-0.8% at room temperature. The cyclic stress response curves, hysteresis loops, relationships between strain amplitude and life, stress amplitude and plastic strain were obtained, and the corresponding fatigue parameters were summarized. Furthermore, the microstructural evolution, fatigue fracture morphology, and crack propagation characteristics during the fatigue process were analyzed. The results revealed that the cyclic stress response behavior of the 9Cr-ODS steel was related to the strain amplitude. With an increase in the strain amplitude, the peak stress in the tension zone of 9Cr-ODS steel increased and the fatigue life decreased. The relationship between cyclic strain and life agreed well with the Coffin-Manson model. Additionally, the 9Cr-ODS steel had no obvious cyclic hardening but revealed a cyclic softening under higher strain amplitudes of 0.5%-0.8%. The microstructure analysis showed that for higher cyclic strain amplitudes, the average grain size and the fraction of the large-angle grain boundaries increased gradually with a reduction in the dislocation density, leading to the cyclic softening of the material. The fatigue crack initiated at the surface and propagated inward by the transgranular mode. The fine grain boundaries and subgrain boundaries of the 9Cr-ODS steel could induce crack deflection, reduce crack propagation rate, and increase fatigue crack propagation life. Moreover, under the same strain amplitude, the peak stress in the tension zone of the steel was almost twice that of the China low activation martensitic (CLAM) steel without a reduction in the fatigue life, indicating a superior low cycle fatigue resistance of the 9Cr-ODS steel.

Key wordsODS steel    low cycle fatigue    fatigue life    microstructure    fracture characteristic
收稿日期: 2023-01-31     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2019YFE03130000);国家自然科学基金项目(51971217)
通讯作者: 李艳芬, yfli@imr.ac.cn,主要从事先进能源用高性能钢铁材料研究
Corresponding author: LI Yanfen, professor, Tel: (024)23978990, E-mail: yfli@imr.ac.cn
作者简介: 王旗涛,男,1997年生,博士生
图1  9Cr-ODS钢疲劳试样的尺寸
图2  9Cr-ODS钢热处理后显微组织的OM像和SEM像
图3  9Cr-ODS钢的循环应力响应曲线
图4  中值寿命(Nf / 2)处的应力-应变滞后回线
图5  循环应变幅与反向加载次数(2Nf)的关系及Nf / 2处的应力幅(Δσ / 2)与塑性应变幅(Δεp / 2)的关系
图6  9Cr-ODS钢在热处理态和不同应变幅下的反极图
图7  9Cr-ODS钢在热处理态和不同应变幅下的局部取向差(KAM)图
图8  9Cr-ODS钢在热处理态和不同应变幅下的晶粒平均取向差(GAM)图
图9  9Cr-ODS钢在不同应变幅下的宏观断口、裂纹源区及裂纹扩展区形貌的SEM像
图10  9Cr-ODS、中国低活化马氏体(CLAM)钢[6]及Eurofer ODS钢[26,27]在不同Δεt / 2下的疲劳响应曲线;室温下几种典型低活化铁素体/马氏体(RAFM)钢的循环总应变幅与反向加载次数的关系
SteelTσ'f / Eε'fbcK'n'
KMPa
9Cr-ODS3000.733112.12-0.0722-0.52681628.400.113
CLAM[6]3000.539659.18-0.0930-0.6154514.660.128
Eurofer 97[1]300----0.5520--
F82H[3]3000.472267.72-0.0850-0.7805--
JLF-1[27]3001.023091.02-0.0946-0.5956--
表1  室温下9Cr-ODS钢与几种典型RAFM钢[1,3,6,27]的低周疲劳参数
图11  9Cr-ODS钢在热处理态及不同Δεt / 2下的平均晶粒尺寸和数目,以及大角度晶界(HAGBs)和小角度晶界(LAGBs)的体积分数
图12  9Cr-ODS钢在热处理态及不同Δεt / 2下的微观结构演化结果
图13  9Cr-ODS钢在Δεt / 2 = 0.8%时的裂纹起源与扩展
1 Marmy P, Kruml T. Low cycle fatigue of Eurofer 97 [J]. J. Nucl. Mater., 2008, 377: 52
2 Nishimura A, Nagasaka T, Inoue N, et al. Low cycle fatigue properties of a low activation ferritic steel (JLF-1) at room temperature [J]. J. Nucl. Mater., 2000, 283-287: 677
3 Stubbins J F, Gelles D S. Fatigue performance and cyclic softening of F82H, a ferritic-martensitic steel [J]. J. Nucl. Mater., 1996, 233-237: 331
4 Hirose T, Tanigawa H, Ando M, et al. Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2002, 307-311: 304
5 Lindau R, Möeslang A, Rieth M, et al. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts [J]. Fusion Eng. Des., 2005, 75-79: 989
6 Hu X, Huang L X, Wang W G, et al. Low cycle fatigue properties of CLAM steel at room temperature [J]. Fusion Eng. Des., 2013, 88: 3050
7 Chauhan A, Litvinov D, de Carlan Y, et al. Study of the deformation and damage mechanisms of a 9Cr-ODS steel: Microstructure evolution and fracture characteristics [J]. Mater. Sci. Eng., 2016, A658: 123
8 Cui C, Huang C, Su X P, et al. R&D on advanced cladding materials ODS alloys for fast reactor [J]. Nucl. Sci. Eng., 2011, 31: 305
8 崔 超, 黄 晨, 苏喜平 等. 快堆先进包壳材料ODS合金发展研究 [J]. 核科学与工程, 2011, 31: 305
9 Li S F. Study on oxide strengthened dispersion alloys for Generation Ⅳ advanced nuclear systems [D]. Beijing: University of Science and Technology Beijing, 2016
9 李少夫. 用于第四代先进核能系统的氧化物弥散强化合金的研究 [D]. 北京: 北京科技大学, 2016
10 Yamashita S, Watanabe S, Ohnuki S, et al. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels [J]. J. Nucl. Mater., 2000, 283-287: 647
11 Lv Z. Development and prospect of nano-structured ODS steels for fusion reactor first wall application [J]. Atom. Energy Sci. Technol., 2011, 45: 1105
11 吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45: 1105
12 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
13 Lucas G E. High chromium ferritic and martensitic steels for nuclear applications: R. Klueh and D. Harries [J]. J. Nucl. Mater., 2002, 302: 232
14 Xu Y P, Lv Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
14 徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
15 Chauhan A, Hoffmann J, Litvinov D, et al. High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 2 - hold time influence, microstructural evolution and damage characteristics [J]. Mater. Sci. Eng., 2018, A730: 197
16 Straßberger L, Chauhan A, Czink S, et al. High-temperature low-cycle fatigue behavior and microstructural evolution of an ODS steel based on conventional T91 [J]. Int. J. Fatigue, 2017, 100: 50
17 Xu H J. Research on microstructure and mechanical property of 15Cr-ODS ferritic alloys [D]. Shenyang: Northeastern University, 2017
17 徐海健. 15Cr-ODS铁素体合金微观结构及力学性能的研究 [D]. 沈阳: 东北大学, 2017
18 Chauhan A, Hoffmann J, Litvinov D, et al. High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1 - pure fatigue, microstructure evolution and damage characteristics [J]. Mater. Sci. Eng., 2017, A707: 207
19 Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
20 Mukhopadhyay D K, Froes F H, Gelles D S. Development of oxide dispersion strengthened ferritic steels for fusion [J]. J. Nucl. Mater., 1998, 258-263: 1209
21 Zhang J R, Li Y F, Rui X, et al. Study on microstructure and mechanical properties of 9Cr-ODS steel prepared by a powder hot forging process [J]. J. Iron Steel Res., 2021, 33(11): 1171
doi: 10.13228/j.boyuan.issn1001-0963.20210088
21 张家榕, 李艳芬, 芮 祥 等. 粉末热锻制备9Cr-ODS钢的微观组织和力学性能研究 [J]. 钢铁研究学报, 2021, 33(11): 1171
doi: 10.13228/j.boyuan.issn1001-0963.20210088
22 Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall Sin, 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
22 芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
23 Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. J. Fluids Eng., 1954, 76: 931
24 Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater., 1996, 233-237: 138
25 Srivatsan T S, Al-Hajri M, Troxell J D. The tensile deformation, cyclic fatigue and final fracture behavior of dispersion strengthened copper [J]. Mech. Mater., 2004, 36: 99
26 Kuběna I, Kruml T, Spätig P, et al. Fatigue behaviour of ODS ferritic-martensitic Eurofer steel [J]. Procedia Eng., 2010, 2: 717
27 Li H L, Nishimura A, Li Z X, et al. Low cycle fatigue behavior of JLF-1 steel at elevated temperatures [J]. Fusion Eng. Des., 2006, 81: 241
28 Hu X, Huang L X, Yan W, et al. Microstructure evolution in CLAM steel under low cycle fatigue [J]. Mater. Sci. Eng., 2014, A607: 35
29 Msolli S. Thermoelastoviscoplastic modeling of RAFM steel JLF-1 using tensile and low cycle fatigue experiments [J]. J. Nucl. Mater., 2014, 451: 336
30 Bhattacharya A, Zinkle S J, Henry J, et al. Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: A review [J]. J. Phys. Energy, 2022, 4: 034003
31 Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta Metall. Sin., 2020, 56: 937
doi: 10.11900/0412.1961.2019.00291
31 周红伟, 白凤梅, 杨 磊 等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56: 937
doi: 10.11900/0412.1961.2019.00291
32 Zhao C, Huang J F, Zhang J, et al. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 oC [J]. Chin. J. Eng., 2020, 42: 602
32 赵 超, 黄进峰, 张 津 等. 4Cr5MoSiV1热作模具钢700 ℃的低周疲劳行为 [J]. 工程科学学报, 2020, 42: 602
[1] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[2] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[3] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[4] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[5] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[6] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[7] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[8] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[9] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[10] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[11] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[12] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[13] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[14] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[15] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.