|
|
聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为 |
王旗涛1, 李艳芬2,3( ), 张家榕2,3, 李尧志1, 付海阳1, 李新乐1, 严伟2,3, 单以银2,3 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature |
WANG Qitao1, LI Yanfen2,3( ), ZHANG Jiarong2,3, LI Yaozhi1, FU Haiyang1, LI Xinle1, YAN Wei2,3, SHAN Yiyin2,3 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
Qitao WANG,
Yanfen LI,
Jiarong ZHANG,
Yaozhi LI,
Haiyang FU,
Xinle LI,
Wei YAN,
Yiyin SHAN.
Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature[J]. Acta Metall Sin, 2025, 61(2): 323-335.
1 |
Marmy P, Kruml T. Low cycle fatigue of Eurofer 97 [J]. J. Nucl. Mater., 2008, 377: 52
|
2 |
Nishimura A, Nagasaka T, Inoue N, et al. Low cycle fatigue properties of a low activation ferritic steel (JLF-1) at room temperature [J]. J. Nucl. Mater., 2000, 283-287: 677
|
3 |
Stubbins J F, Gelles D S. Fatigue performance and cyclic softening of F82H, a ferritic-martensitic steel [J]. J. Nucl. Mater., 1996, 233-237: 331
|
4 |
Hirose T, Tanigawa H, Ando M, et al. Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2002, 307-311: 304
|
5 |
Lindau R, Möeslang A, Rieth M, et al. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts [J]. Fusion Eng. Des., 2005, 75-79: 989
|
6 |
Hu X, Huang L X, Wang W G, et al. Low cycle fatigue properties of CLAM steel at room temperature [J]. Fusion Eng. Des., 2013, 88: 3050
|
7 |
Chauhan A, Litvinov D, de Carlan Y, et al. Study of the deformation and damage mechanisms of a 9Cr-ODS steel: Microstructure evolution and fracture characteristics [J]. Mater. Sci. Eng., 2016, A658: 123
|
8 |
Cui C, Huang C, Su X P, et al. R&D on advanced cladding materials ODS alloys for fast reactor [J]. Nucl. Sci. Eng., 2011, 31: 305
|
8 |
崔 超, 黄 晨, 苏喜平 等. 快堆先进包壳材料ODS合金发展研究 [J]. 核科学与工程, 2011, 31: 305
|
9 |
Li S F. Study on oxide strengthened dispersion alloys for Generation Ⅳ advanced nuclear systems [D]. Beijing: University of Science and Technology Beijing, 2016
|
9 |
李少夫. 用于第四代先进核能系统的氧化物弥散强化合金的研究 [D]. 北京: 北京科技大学, 2016
|
10 |
Yamashita S, Watanabe S, Ohnuki S, et al. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels [J]. J. Nucl. Mater., 2000, 283-287: 647
|
11 |
Lv Z. Development and prospect of nano-structured ODS steels for fusion reactor first wall application [J]. Atom. Energy Sci. Technol., 2011, 45: 1105
|
11 |
吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45: 1105
|
12 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
|
13 |
Lucas G E. High chromium ferritic and martensitic steels for nuclear applications: R. Klueh and D. Harries [J]. J. Nucl. Mater., 2002, 302: 232
|
14 |
Xu Y P, Lv Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
|
14 |
徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
|
15 |
Chauhan A, Hoffmann J, Litvinov D, et al. High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 2 - hold time influence, microstructural evolution and damage characteristics [J]. Mater. Sci. Eng., 2018, A730: 197
|
16 |
Straßberger L, Chauhan A, Czink S, et al. High-temperature low-cycle fatigue behavior and microstructural evolution of an ODS steel based on conventional T91 [J]. Int. J. Fatigue, 2017, 100: 50
|
17 |
Xu H J. Research on microstructure and mechanical property of 15Cr-ODS ferritic alloys [D]. Shenyang: Northeastern University, 2017
|
17 |
徐海健. 15Cr-ODS铁素体合金微观结构及力学性能的研究 [D]. 沈阳: 东北大学, 2017
|
18 |
Chauhan A, Hoffmann J, Litvinov D, et al. High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1 - pure fatigue, microstructure evolution and damage characteristics [J]. Mater. Sci. Eng., 2017, A707: 207
|
19 |
Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
|
20 |
Mukhopadhyay D K, Froes F H, Gelles D S. Development of oxide dispersion strengthened ferritic steels for fusion [J]. J. Nucl. Mater., 1998, 258-263: 1209
|
21 |
Zhang J R, Li Y F, Rui X, et al. Study on microstructure and mechanical properties of 9Cr-ODS steel prepared by a powder hot forging process [J]. J. Iron Steel Res., 2021, 33(11): 1171
doi: 10.13228/j.boyuan.issn1001-0963.20210088
|
21 |
张家榕, 李艳芬, 芮 祥 等. 粉末热锻制备9Cr-ODS钢的微观组织和力学性能研究 [J]. 钢铁研究学报, 2021, 33(11): 1171
doi: 10.13228/j.boyuan.issn1001-0963.20210088
|
22 |
Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall Sin, 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
|
22 |
芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
|
23 |
Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. J. Fluids Eng., 1954, 76: 931
|
24 |
Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater., 1996, 233-237: 138
|
25 |
Srivatsan T S, Al-Hajri M, Troxell J D. The tensile deformation, cyclic fatigue and final fracture behavior of dispersion strengthened copper [J]. Mech. Mater., 2004, 36: 99
|
26 |
Kuběna I, Kruml T, Spätig P, et al. Fatigue behaviour of ODS ferritic-martensitic Eurofer steel [J]. Procedia Eng., 2010, 2: 717
|
27 |
Li H L, Nishimura A, Li Z X, et al. Low cycle fatigue behavior of JLF-1 steel at elevated temperatures [J]. Fusion Eng. Des., 2006, 81: 241
|
28 |
Hu X, Huang L X, Yan W, et al. Microstructure evolution in CLAM steel under low cycle fatigue [J]. Mater. Sci. Eng., 2014, A607: 35
|
29 |
Msolli S. Thermoelastoviscoplastic modeling of RAFM steel JLF-1 using tensile and low cycle fatigue experiments [J]. J. Nucl. Mater., 2014, 451: 336
|
30 |
Bhattacharya A, Zinkle S J, Henry J, et al. Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: A review [J]. J. Phys. Energy, 2022, 4: 034003
|
31 |
Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta Metall. Sin., 2020, 56: 937
doi: 10.11900/0412.1961.2019.00291
|
31 |
周红伟, 白凤梅, 杨 磊 等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56: 937
doi: 10.11900/0412.1961.2019.00291
|
32 |
Zhao C, Huang J F, Zhang J, et al. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 oC [J]. Chin. J. Eng., 2020, 42: 602
|
32 |
赵 超, 黄进峰, 张 津 等. 4Cr5MoSiV1热作模具钢700 ℃的低周疲劳行为 [J]. 工程科学学报, 2020, 42: 602
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|