Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 297-308    DOI: 10.11900/0412.1961.2022.00578
  研究论文 本期目录 | 过刊浏览 |
南极大气环境下Q460Q690 低合金钢的腐蚀行为
闫茂鑫1, 李杰2, 王哲超2, 姚旭2, 胡秉晨2, 葛峰3, 崔中雨1(), 王昕1, 崔洪芝1
1 中国海洋大学 材料科学与工程学院 青岛 266100
2 中国极地研究中心(中国极地研究所) 上海 200136
3 北京轻量化国家创新研究院有限公司 北京 100083
Atmospheric Corrosion Behavior of Q460 and Q690 Low Alloy Steels in Antarctic Environment
YAN Maoxin1, LI Jie2, WANG Zhechao2, YAO Xu2, HU Bingchen2, GE Feng3, CUI Zhongyu1(), WANG Xin1, CUI Hongzhi1
1 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2 Polar Research Institute of China, Shanghai 200136, China
3 Beijing National Innovation Institute of Lightweight Ltd, Beijing 100083, China
引用本文:

闫茂鑫, 李杰, 王哲超, 姚旭, 胡秉晨, 葛峰, 崔中雨, 王昕, 崔洪芝. 南极大气环境下Q460Q690 低合金钢的腐蚀行为[J]. 金属学报, 2025, 61(2): 297-308.
Maoxin YAN, Jie LI, Zhechao WANG, Xu YAO, Bingchen HU, Feng GE, Zhongyu CUI, Xin WANG, Hongzhi CUI. Atmospheric Corrosion Behavior of Q460 and Q690 Low Alloy Steels in Antarctic Environment[J]. Acta Metall Sin, 2025, 61(2): 297-308.

全文: PDF(5048 KB)   HTML
摘要: 

为探究海工钢极地环境适用性,本工作基于室外暴露实验,通过腐蚀速率测试、腐蚀形貌分析以及腐蚀产物分析等方法,研究了Q460和Q690低合金钢在南极大气环境下暴露1个月和12个月的腐蚀行为。结果表明,南极低温环境冰层、雪层覆盖下电化学腐蚀过程依然可以发生。暴露初期,冰雪冻-融环境导致液膜长周期存在,促进了腐蚀的进行并且加速了局部腐蚀,Q460和Q690钢的腐蚀速率分别为29.7和77.0 μm/a。暴露12个月后,腐蚀速率分别降低至10.7和18.7 μm/a,腐蚀产物主要由α-FeOOH、γ-FeOOH、β-FeOOH和Fe3O4/γ-Fe2O3组成。由于Cl-的存在,Q460钢和Q690钢的锈层产生了较多的β-FeOOH和裂纹。长周期暴露时,金属表面被冰雪所覆盖,冰层以及锈层对溶解氧及侵蚀性离子的阻挡使得腐蚀的发生受到了抑制,并且局部腐蚀向均匀腐蚀演变。

关键词 南极环境大气腐蚀低合金钢锈层冻-融环境    
Abstract

The environment of the polar regions substantially differs from that at middle and low altitudes, resulting in the distinct degradation behavior of materials in these environments. Low alloy steels with high strength and good corrosion resistance are widely used as structural steels in engineering, but their corrosion behavior in the Antarctic atmosphere has been rarely reported. In the present work, an outdoor exposure experiment was conducted at the Zhongshan station, a research station located in Antarctica, to investigate the atmospheric corrosion behavior of Q460 and Q690 low alloy steels after 1 and 12 month exposures. The surface and cross-sectional morphologies were observed by SEM, and the phase composition of the rust layer was identified by XRD and Raman spectroscopy. The surface morphology and topography of the steel after removing the corrosion products were visualized by SEM and CLSM, respectively. The results show that the electrochemical corrosion process can occur beneath the snow and ice layer in the extremely low temperatures of the Antarctic environment. In the early stage of exposure, the freeze-thaw cycling of ice and snow leads to the development of a surface electrolyte film which persists for a long time, and this promotes corrosion reactions and accelerates localized corrosion. The corrosion rates of Q460 steel and Q690 steel were 29.7 and 77.0 μm/a, respectively, after a one-month exposure to the Antarctic environment. After 12 months of exposure, the corrosion rate decreased to 10.7 and 18.7 μm/a, respectively. The main corrosion products were goethite, lepidocrocite, akaganeite, and magnetite/maghemite. Over the short term, the ice and snow layer meant there were more chloride ions at the interface between the metal and the rust layer compared to warmer environments, and this resulted in more akaganeite forming within the rust layer as well as severe localized corrosion beneath the rust layer. Moreover, due to the freeze-thaw cycles of the surface ice and snow in the low temperature environment, more cracks were produced within the rust layer. After a longer period of exposure, the metal surface became covered with ice and snow. The ice and rust layer formed a barrier to dissolved oxygen and corrosive ions which inhibited the occurrence of further corrosion and resulted in a decrease in the corrosion rate and the evolution from localized corrosion to uniform corrosion.

Key wordsAntarctica    atmospheric corrosion    low alloy steels    rust    freeze-thawing environment
收稿日期: 2022-11-10     
ZTFLH:  TG178  
基金资助:装备预研领域基金项目(80922010601);山东省优青项目(ZR2022YQ44);山东省重大科技创新工程项目(2020CXGC010305)
通讯作者: 崔中雨,cuizhongyu@ouc.edu.cn,主要从事海洋环境腐蚀与应力腐蚀开裂研究
Corresponding author: CUI Zhongyu, professor, Tel: 15376757157, E-mail: cuizhongyu@ouc.edu.cn
作者简介: 闫茂鑫,男,1998年生,硕士生
SteelCPSiCrMnNiVNbTiCuFe
Q4600.090.010.360.0231.42-0.0660.0340.0120.014Bal.
Q6900.060.0050.210.511.760.134---0.3-0.4Bal.
表1  低合金钢Q460和Q690的化学成分 (mass fraction / %)
图1  本实验中的南极中山站暴露地点
图2  Q460和Q690低合金钢微观组织的OM和SEM像
图3  Q460和Q690低合金钢的腐蚀速率随暴露时间的变化
图4  南极大气环境下Q460和Q690低合金钢暴露不同时间的正反面宏观形貌
图5  南极大气环境下Q460和Q690低合金钢暴露不同时间的微观形貌
图6  南极大气环境下Q460和Q690低合金钢暴露不同时间的截面微观形貌
图7  南极大气环境下Q460和Q690低合金钢暴露不同时间的表面腐蚀形貌
图8  南极大气环境下Q460和Q690低合金钢暴露1个月后的表面点蚀坑深度分布统计
图9  Q460和Q690低合金钢暴露于南极大气环境形成的腐蚀产物的物相组成
图10  低合金钢Q460和Q690暴露于南极大气环境形成的腐蚀产物的物相分布
1 Yu L W, Wang J R, Wang S Q, et al. Development strategy for polar equipment in China [J]. Strateg. Study CAE, 2020, 22(6): 84
1 于立伟, 王俊荣, 王树青 等. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84
doi: 10.15302/J-SSCAE-2020.06.011
2 Maxwell P, Viduka A. Antarctic observations: On metal corrosion at three historic huts on Ross Island [A]. Proceedings of Metal 2004 [C]. Canberra: The National Museum of Australia, 2004: 484
3 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
4 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
5 Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
6 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
7 Liu G C, Dong J H, Han E H, et al. Progress in research on rust layer of weathering steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 268
7 刘国超, 董俊华, 韩恩厚 等. 耐候钢锈层研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 268
8 Morcillo M, Chico B, de la Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Reg. Sci. Technol., 2004, 40: 165
9 Ohanian M, Caraballo R, Dalchiele E A, et al. A Mössbauer and electrochemical characterization of the corrosion products formed from marine and marine-Antartic environments [J]. Hyperfine Interact., 2003, 148: 193
10 Gancedo J R, Marco J F, Gracia M, et al. Corrosion reaction of iron exposed to the open atmosphere in the antarctic [J]. Hyperfine Interact., 1994, 83: 363
11 Rosales B, Fernández A. Parameters controlling steel and copper corrosion nucleation and propagation in Antarctica [A]. Proceedings of the Northern Area Western Region Conference: Shining a Northern Light on Corrosion [C]. Anchorage, AK: NACE International, 2001
12 Brass G W. Freezing point depression by common salts: Implications for corrosion in cold climates [A]. Cold Clmate Corrosion: Special Topic [C]. Houston, TX: NACE International, 1999: 29
13 Fu T, Song G L, Zheng D J. Corrosion damage in frozen 3.5 wt.% NaCl solution [J]. Mater. Corros., 2021, 72: 1396
14 White W E, King R J, Coulson K E W. Preliminary observations on corrosion of carbon steel in permafrost [J]. Corrosion, 1983, 39: 346
15 Bartoň K, Bartoňová S, Beránek E. Die kinetik des rostens von eisen in der atmosphäre [J]. Mater. Corros., 1974, 25: 659
16 Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
17 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
17 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
doi: 10.11900/0412.1961.2020.00013
18 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
18 宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
doi: 10.11900/0412.1961.2020.00010
19 Zhang Q C, Wang J J, Wu J S, et al. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, 37: 193
19 张全成, 王建军, 吴建生 等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, 37: 193
20 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
20 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
21 Yang Q H, Liu J P, Zhang L, et al. Review of antarctic landfast sea ice observations [J]. Adv. Water Sci., 2013, 24: 741
22 King G, Ganther W, Hughes J, et al. Studies in Antarctica help to better define the temperature criterion for atmospheric corrosion [A]. Proceedings of the Northern Area Western Region Conference: Shining a Northern Light on Corrosion [C]. Anchorage, AK: NACE International, 2001
23 De La Fuente D, Díaz I, Alcántara J, et al. Corrosion mechanisms of mild steel in chloride-rich atmospheres [J]. Mater. Corros., 2016, 67: 227
24 Alcántara J, Chico B, Simancas J, et al. An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres [J]. Mater. Charact., 2016, 118: 65
25 Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
26 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
27 Morcillo M, Chico B, Alcántara J, et al. SEM/micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
28 Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance [J]. Corros. Sci., 2008, 50: 3401
29 Thibeau R J, Brown C W, Heidersbach R H. Raman spectra of possible corrosion products of iron [J]. Appl. Spectrosc., 1978, 32: 532
30 Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
31 Fleet M. The structure of magnetite [J]. Acta Crystallogr., 1981, 37B: 917
32 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
32 郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
33 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
34 Schwarz H. Über die Wirkung des Magnetits beim atmosphärischen Rosten und beim Unterrosten von Anstrichen [J]. Mater. Corros., 1972, 23: 648
35 Tanaka H, Mishima R, Hatanaka N, et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media [J]. Corros. Sci., 2014, 78: 384
36 Ishikawa T, Kondo Y, Yasukawa A, et al. Formation of magnetite in the presence of ferric oxyhydroxides [J]. Corros. Sci., 1998, 40: 1239
37 Refait P H, Abdelmoula M, Génin J M R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions [J]. Corros. Sci., 1998, 40: 1547
38 Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels [J]. Corros. Sci., 2004, 46: 1669
39 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
39 柯 伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
40 Fu G Q, Zhu M Y, Gao X L. Rust layer formed on low carbon weathering steels with different Mn, Ni contents in environment containing chloride ions [J]. Mater. Sci., 2016, 22: 501
[1] 顾天真, 刘雨薇, 彭灿, 张鹏, 王振尧, 汪川, 马成, 曹宏玮. Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为[J]. 金属学报, 2025, 61(2): 278-286.
[2] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[5] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[7] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[9] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[10] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[11] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[12] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[13] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[14] 郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
[15] 韩军科,严红,黄耀,周鲁军,杨善武. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响[J]. 金属学报, 2017, 53(2): 163-174.