|
|
|
| O含量对Ti2448合金时效析出行为及力学性能的影响 |
李丹1,2, 宫得伦1, 郝玉琳1( ) |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
| Effect of O Content on the Aging Precipitation Behavior and Mechanical Properties of Ti2448 Alloy |
LI Dan1,2, GONG Delun1, HAO Yulin1( ) |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
李丹, 宫得伦, 郝玉琳. O含量对Ti2448合金时效析出行为及力学性能的影响[J]. 金属学报, 2025, 61(12): 1790-1802.
Dan LI,
Delun GONG,
Yulin HAO.
Effect of O Content on the Aging Precipitation Behavior and Mechanical Properties of Ti2448 Alloy[J]. Acta Metall Sin, 2025, 61(12): 1790-1802.
| [1] |
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
|
| [1] |
李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
|
| [2] |
Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin, Heidelberg: Springer, 2007: 8
|
| [3] |
Zhu Y M, Zhang K, Meng Z C, et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing [J]. Nat. Mater., 2022, 21: 1258
|
| [4] |
Gong D L, Wang H L, Hao S H, et al. Ordering-induced Elinvar effect over a wide temperature range in a spinodal decomposition titanium alloy [J]. J. Mater. Sci. Technol., 2023, 150: 245
|
| [5] |
Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
|
| [6] |
Wang H L, Hao Y L, He S Y, et al. Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition [J]. Scr. Mater., 2017, 133: 70
|
| [7] |
Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
|
| [8] |
Liu Z, Welsch G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys [J]. Metall. Trans., 1988, 19A: 527
|
| [9] |
Biesiekierski A, Wang J, Abdel-Hady Gepreel M, et al. A new look at biomedical Ti-based shape memory alloys [J]. Acta Biomater., 2012, 8: 1661
|
| [10] |
Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
|
| [11] |
Tahara M, Kim H Y, Inamura T, et al. Lattice modulation and superelasticity in oxygen-added β-Ti alloys [J]. Acta Mater., 2011, 59: 6208
|
| [12] |
Paton N E, Williams J C. The influence of oxygen content on the athermal β-ω transformation [J]. Scr. Metall., 1973, 7: 647
|
| [13] |
Niu J G, Ping D H, Ohno T, et al. Suppression effect of oxygen on the β to ω transformation in a β-type Ti alloy: Insights from first-principles [J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 015007
|
| [14] |
Williams J C, Hickman B S, Leslie D H. The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys [J]. Metall. Trans., 1971, 2: 477
|
| [15] |
Tane M, Nakano T, Kuramoto S, et al. Low Young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects [J]. Acta Mater., 2011, 59: 6975
|
| [16] |
Niinomi M, Nakai M, Hendrickson M, et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy [J]. Scr. Mater., 2016, 123: 144
|
| [17] |
Homma T, Arafah A, Haley D, et al. Effect of alloying elements on microstructural evolution in oxygen content controlled Ti-29Nb-13Ta-4.6Zr (wt%) alloys for biomedical applications during aging [J]. Mater. Sci. Eng., 2018, A709: 312
|
| [18] |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
|
| [18] |
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
| [19] |
Chong Y, Gholizadeh R, Guo B Q, et al. Oxygen interstitials make metastable β titanium alloys strong and ductile [J]. Acta Mater., 2023, 257: 119165
|
| [20] |
Geng F, Niinomi M, Nakai M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content [J]. Mater. Sci. Eng., 2011, A528 : 5435
|
| [21] |
Fu Y, Xiao W L, Zhao S T, et al. Substantially strengthening a dual-phase titanium alloy by moderate oxygen doping [J]. Scr. Mater., 2023, 226: 115236
|
| [22] |
Xiang W, Wang T, Miao R j, et al. Influence of oxygen on microstructures and tensile properties of hot-rolled Ti-4Zr-xO alloys [J]. Mater. Charact., 2021, 171: 110681
|
| [23] |
dos Santos L U, Campo K N, Caram R, et al. Oxygen addition in biomedical Ti-Nb alloys with low Nb contents: Effect on the microstructure and mechanical properties [J]. Mater. Sci. Eng., 2021, A823: 141750
|
| [24] |
Li S J, Jia M T, Prima F, et al. Improvements in nonlinear elasticity and strength by grain refinement in a titanium alloy with high oxygen content [J]. Scr. Mater., 2011, 64: 1015
|
| [25] |
Sosa J M, Huber D E, Welk B A, et al. Mipar™: 2D and 3D image analysis software designed by materials scientists, for all scientists [J]. Microsc. Microanal., 2017, 23(suppl.1): 230
|
| [26] |
Sharma A, Soni V, Dasari S, et al. Fine scale alpha precipitation in Ti-19at.%V in the absence of influence from omega precipitates [J]. Scr. Mater., 2021, 196: 113766
|
| [27] |
Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys [J]. Acta Mater., 2016, 103: 165
|
| [28] |
Cui J P, Hao Y L, Li S J, et al. Reversible movement of homogenously nucleated dislocations in a β-titanium alloy [J]. Phys. Rev. Lett., 2009, 102: 045503
|
| [29] |
Wei L S, Kim H Y, Koyano T, et al. Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys [J]. Scr. Mater., 2016, 123: 55
|
| [30] |
Chou K, Marquis E A. Oxygen effects on ω and α phase transformations in a metastable β Ti-Nb alloy [J]. Acta Mater., 2019, 181: 367
|
| [31] |
Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Mater. Sci. Eng., 2006, A441 : 112
|
| [32] |
Pang E L, Pickering E J, Baik S I, et al. The effect of zirconium on the omega phase in Ti-24Nb-[0-8]Zr (at.%) alloys [J]. Acta Mater., 2018, 153: 62
|
| [33] |
Okamoto N L, Brumbauer F, Luckabauer M, et al. Why is neutral tin addition necessary for biocompatible β-titanium alloys?—Synergistic effects of suppressing ω transformations [J]. Acta Mater., 2024, 273: 119968
|
| [34] |
Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
|
| [35] |
Mott N F, Nabarro F R N. An attempt to estimate the degree of precipitation hardening, with a simple model [J]. Proc. Phys. Soc., 1940, 52: 86
|
| [36] |
Villain J, Lavagna M, Bruno P. Jacques Friedel and the physics of metals and alloys [J]. C. R. Phys., 2016, 17: 276
|
| [37] |
Gurney C. Report of a conference on the strength solids (1947) [J]. Nature, 1949, 163: 117
|
| [38] |
Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41B: 659
|
| [39] |
Conrad H, de Meester B, Döner M, et al. Strengthening of alpha titanium by the interstitial solutes C, N, and O [A]. Physics of Solid Solution Strengthening [M]. New York: Springer, 1975: 1
|
| [40] |
de Meester B, Döner M, Conrad H. Deformation kinetics of the Ti-6Al-4V alloy at low temperatures [J]. Metall. Trans., 1975, 6A: 65
|
| [41] |
Wang W J. Spinodal decomposition and its effect on mechanical properties of Ti2448 alloy [D]. Hefei: University of Science and Technology of China, 2022
|
| [41] |
王伟杰. Ti2448合金的成分分解和组织性能研究 [D]. 合肥: 中国科学技术大学, 2022
|
| [42] |
Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
|
| [43] |
Nembach E. Precipitation hardening caused by a difference in shear modulus between particle and matrix [J]. Phys. Status Solidi, 1983, 78A: 571
|
| [44] |
Kato M. Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
|
| [45] |
Wei Q Q, Wang L Q, Fu Y F, et al. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy [J]. Mater. Des., 2011, 32: 2934
|
| [46] |
Chong Y, Gholizadeh R, Tsuru T, et al. Grain refinement in titanium prevents low temperature oxygen embrittlement [J]. Nat. Commun., 2023, 14: 404
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|