Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1790-1802    DOI: 10.11900/0412.1961.2024.00107
  研究论文 本期目录 | 过刊浏览 |
O含量对Ti2448合金时效析出行为及力学性能的影响
李丹1,2, 宫得伦1, 郝玉琳1()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of O Content on the Aging Precipitation Behavior and Mechanical Properties of Ti2448 Alloy
LI Dan1,2, GONG Delun1, HAO Yulin1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李丹, 宫得伦, 郝玉琳. O含量对Ti2448合金时效析出行为及力学性能的影响[J]. 金属学报, 2025, 61(12): 1790-1802.
Dan LI, Delun GONG, Yulin HAO. Effect of O Content on the Aging Precipitation Behavior and Mechanical Properties of Ti2448 Alloy[J]. Acta Metall Sin, 2025, 61(12): 1790-1802.

全文: PDF(5015 KB)   HTML
摘要: 

为探究O含量对经双步热处理后Ti2448合金时效析出行为及力学性能的影响,选取2种不同O含量的Ti2448合金(LO:0.08%和HO:0.33%,质量分数)为研究对象,分别采用873和923 K退火10 min + 773 K时效1~4 h的热处理工艺,通过XRD、SEM、TEM和拉伸性能测试等方法,研究合金的组织演化行为和力学性能变化。结果表明,O含量对热处理前合金的相组成与晶粒尺寸影响较小,但提高O含量能抑制合金的双屈服特征并提升合金强度与弹性模量。经双步热处理后,2种O含量合金均析出致密的片层状析出相,伴有模量硬化与时效强化;O含量对析出相的初始厚度影响较小,但影响析出相在后续时效过程的粗化行为。相同热处理制度下,Ti2448-HO合金析出相的体积分数更高,进而贡献更强的模量硬化与时效强化,因此时效态Ti2448-HO合金具有更高的弹性模量与强度。

关键词 亚稳β型钛合金O含量热处理析出相力学性能    
Abstract

Metastable β-titanium alloys are widely used in advanced biomedical applications because of their high strength and low modulus. Strength improvements in these alloys are mainly achieved through α-phase precipitation. Interestingly, a novel α″ + β dual-phase microstructure has been discovered in a multifunctional Ti2448 alloy after aging treatments, which effectively enhanced the strength while maintaining decent ductility. Since O plays a crucial role in regulating the decomposition and mechanical properties of titanium alloys, understanding its effects on the microstructural evolution and mechanical behavior of Ti2448 alloys is of great importance. However, the effect of O on the decomposition behavior of the Ti2448 alloy remains unclear. To investigate the influence of O content on the microstructure evolution and mechanical properties of the Ti2448 alloy, two Ti2448 alloys with different oxygen contents were selected: low oxygen (LO: 0.08%, mass fraction) and high oxygen (HO: 0.33%, mass fraction). This study employed a two-step heat treatment (annealing at 873/923 K for 10 min, followed by aging at 773 K for 1-4 h) on Ti2448-LO and Ti2448-HO alloys, focusing on the evolution of their microstructure and mechanical properties. Results indicated that O content minimally influenced the phase composition and grain size of the alloys before heat treatment. However, increasing the O content considerably suppressed the double yield phenomenon and enhanced the strength and elastic modulus of the alloy. After the two-step heat treatment, both alloys exhibited the precipitation of dense lamellar phases, resulting in remarkable modulus hardening and aging strengthening. Although the initial thickness of the precipitated phase was relatively unaffected by the O content, its subsequent coarsening behavior during aging was influenced. Under the same heat treatment conditions, the Ti2448-HO alloy exhibited a higher volume fraction of precipitates, leading to stronger modulus hardening and aging strengthening. Consequently, the aged Ti2448-HO alloy exhibited higher elastic modulus and strength than the Ti2448-LO alloy.

Key wordsmetastable β titanium alloy    O content    heat treatment    precipitate    mechanical property
收稿日期: 2024-04-15     
ZTFLH:  TG156.1  
基金资助:国家自然科学基金项目(U2341259)
通讯作者: 郝玉琳,ylhao@imr.ac.cn,主要从事生物医用钛合金的研究
Corresponding author: HAO Yulin, professor, Tel: (024)83978841, E-mail: ylhao@imr.ac.cn
作者简介: 李丹,女,1995年生,博士
AlloyNbZrSnOTi
Ti2448-LO24.003.978.230.08Bal.
Ti2448-HO24.203.997.700.33Bal.
表1  Ti2448合金化学成分 (mass fraction / %)
图1  不同O含量Ti2448合金的双步热处理工艺示意图
图2  热轧态Ti2448-LO和Ti2448-HO合金的电子通道衬度成像(ECCI)像
图3  热轧态Ti2448-LO和Ti2448-HO合金的TEM像及选区电子衍射(SAED)花样
图4  热轧态Ti2448-LO和Ti2448-HO合金的XRD谱
图5  热轧态Ti2448-LO和Ti2448-HO合金的工程应力-应变曲线
AlloyE / GPaHardness / HV
Ti2448-LO49 ± 0.8234 ± 5.2
Ti2448-HO57 ± 0.2281 ± 0.5
表2  热轧态Ti2448-LO和Ti2448-HO合金的弹性模量和硬度
图6  873 K退火10 min后Ti2448-LO和Ti2448-HO合金的ECCI像
图7  923 K退火10 min后Ti2448-LO和Ti2448-HO合金的ECCI像
图8  873和923 K退火10 min后Ti2448-LO和Ti2448-HO合金的XRD谱
图9  873 K、10 min + 773 K、1 h双步热处理后Ti2448-LO合金中析出相的TEM像和SEAD花样
图10  873 K、10 min + 773 K、1 h双步热处理后Ti2448-HO合金中析出相的TEM像和SAED花样
图11  873 K、10 min + 773 K、1~4 h双步热处理后Ti2448-LO和Ti2448-HO合金的ECCI像及经MIPAR软件处理后的ECCI像
图12  923 K、10 min + 773 K、1~4 h双步热处理后Ti2448-LO和Ti2448-HO合金的ECCI像
AlloyAging time / hτ / nmρ / μm-2V / %
Ti2448-LO122.9 ± 8.376.2 ± 9.025.4 ± 2.7
226.6 ± 15.464.8 ± 8.330.7 ± 1.5
428.6 ± 12.550.6 ± 7.234.2 ± 2.4
Ti2448-HO125.4 ± 8.571.8 ± 4.631.7 ± 3.4
228.5 ± 10.254.8 ± 1.134.5 ± 3.5
430.6 ± 9.845.0 ± 5.735.9 ± 1.5
表3  873 K、10 min + 773 K、1~4 h双步热处理后2种合金中析出相的厚度、数密度及体积分数
图13  不同热处理制度下Ti2448-LO和Ti2448-HO合金弹性模量随时效时间的演化
图14  不同热处理制度下Ti2448-LO和Ti2448-HO合金硬度随时效时间的演化
图15  不同热处理制度下Ti2448-LO和Ti2448-HO合金的工程应力-应变曲线
AlloyAging time / hτ / nmρ / μm-2V / %
Ti2448-LO128.3 ± 9.564.2 ± 4.530.0 ± 3.3
235.1 ± 12.359.0 ± 16.431.2 ± 2.5
437.4 ± 15.258.1 ± 1.635.9 ± 5.3
Ti2448-HO131.4 ± 12.247.9 ± 9.834.3 ± 4.5
247.2 ± 3435.6 ± 17.936.0 ± 1.7
451.9 ± 42.920.5 ± 3.536.6 ± 6.0
表4  923 K、10 min + 773 K、 1~4 h双步热处理后2种合金中析出相的厚度、数密度及体积分数
AlloyHeat treatmentRm / MPaA / %
Ti2448-LOAs hot-rolled810 ± 4213.8 ± 1.0
873 K, 10 min + 773 K, 4 h950 ± 1718.3 ± 2.5
923 K, 10 min + 733 K, 4 h1047 ± 114.5 ± 0.1
Ti2448-HOAs hot-rolled912 ± 2213.7 ± 3.9
873 K, 10 min + 773 K, 2 h1146 ± 1013.3 ± 1.1
923 K, 10 min + 733 K, 2 h1128 ± 514.0 ± 0.7
表5  不同热处理制度下Ti2448-LO和Ti2448-HO合金的室温力学性能
[1] Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
[1] 李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
[2] Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin, Heidelberg: Springer, 2007: 8
[3] Zhu Y M, Zhang K, Meng Z C, et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing [J]. Nat. Mater., 2022, 21: 1258
[4] Gong D L, Wang H L, Hao S H, et al. Ordering-induced Elinvar effect over a wide temperature range in a spinodal decomposition titanium alloy [J]. J. Mater. Sci. Technol., 2023, 150: 245
[5] Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
[6] Wang H L, Hao Y L, He S Y, et al. Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition [J]. Scr. Mater., 2017, 133: 70
[7] Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
[8] Liu Z, Welsch G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys [J]. Metall. Trans., 1988, 19A: 527
[9] Biesiekierski A, Wang J, Abdel-Hady Gepreel M, et al. A new look at biomedical Ti-based shape memory alloys [J]. Acta Biomater., 2012, 8: 1661
[10] Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
[11] Tahara M, Kim H Y, Inamura T, et al. Lattice modulation and superelasticity in oxygen-added β-Ti alloys [J]. Acta Mater., 2011, 59: 6208
[12] Paton N E, Williams J C. The influence of oxygen content on the athermal β-ω transformation [J]. Scr. Metall., 1973, 7: 647
[13] Niu J G, Ping D H, Ohno T, et al. Suppression effect of oxygen on the β to ω transformation in a β-type Ti alloy: Insights from first-principles [J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 015007
[14] Williams J C, Hickman B S, Leslie D H. The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys [J]. Metall. Trans., 1971, 2: 477
[15] Tane M, Nakano T, Kuramoto S, et al. Low Young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects [J]. Acta Mater., 2011, 59: 6975
[16] Niinomi M, Nakai M, Hendrickson M, et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy [J]. Scr. Mater., 2016, 123: 144
[17] Homma T, Arafah A, Haley D, et al. Effect of alloying elements on microstructural evolution in oxygen content controlled Ti-29Nb-13Ta-4.6Zr (wt%) alloys for biomedical applications during aging [J]. Mater. Sci. Eng., 2018, A709: 312
[18] Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
[18] 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
[19] Chong Y, Gholizadeh R, Guo B Q, et al. Oxygen interstitials make metastable β titanium alloys strong and ductile [J]. Acta Mater., 2023, 257: 119165
[20] Geng F, Niinomi M, Nakai M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content [J]. Mater. Sci. Eng., 2011, A528 : 5435
[21] Fu Y, Xiao W L, Zhao S T, et al. Substantially strengthening a dual-phase titanium alloy by moderate oxygen doping [J]. Scr. Mater., 2023, 226: 115236
[22] Xiang W, Wang T, Miao R j, et al. Influence of oxygen on microstructures and tensile properties of hot-rolled Ti-4Zr-xO alloys [J]. Mater. Charact., 2021, 171: 110681
[23] dos Santos L U, Campo K N, Caram R, et al. Oxygen addition in biomedical Ti-Nb alloys with low Nb contents: Effect on the microstructure and mechanical properties [J]. Mater. Sci. Eng., 2021, A823: 141750
[24] Li S J, Jia M T, Prima F, et al. Improvements in nonlinear elasticity and strength by grain refinement in a titanium alloy with high oxygen content [J]. Scr. Mater., 2011, 64: 1015
[25] Sosa J M, Huber D E, Welk B A, et al. Mipar™: 2D and 3D image analysis software designed by materials scientists, for all scientists [J]. Microsc. Microanal., 2017, 23(suppl.1): 230
[26] Sharma A, Soni V, Dasari S, et al. Fine scale alpha precipitation in Ti-19at.%V in the absence of influence from omega precipitates [J]. Scr. Mater., 2021, 196: 113766
[27] Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys [J]. Acta Mater., 2016, 103: 165
[28] Cui J P, Hao Y L, Li S J, et al. Reversible movement of homogenously nucleated dislocations in a β-titanium alloy [J]. Phys. Rev. Lett., 2009, 102: 045503
[29] Wei L S, Kim H Y, Koyano T, et al. Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys [J]. Scr. Mater., 2016, 123: 55
[30] Chou K, Marquis E A. Oxygen effects on ω and α phase transformations in a metastable β Ti-Nb alloy [J]. Acta Mater., 2019, 181: 367
[31] Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Mater. Sci. Eng., 2006, A441 : 112
[32] Pang E L, Pickering E J, Baik S I, et al. The effect of zirconium on the omega phase in Ti-24Nb-[0-8]Zr (at.%) alloys [J]. Acta Mater., 2018, 153: 62
[33] Okamoto N L, Brumbauer F, Luckabauer M, et al. Why is neutral tin addition necessary for biocompatible β-titanium alloys?—Synergistic effects of suppressing ω transformations [J]. Acta Mater., 2024, 273: 119968
[34] Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
[35] Mott N F, Nabarro F R N. An attempt to estimate the degree of precipitation hardening, with a simple model [J]. Proc. Phys. Soc., 1940, 52: 86
[36] Villain J, Lavagna M, Bruno P. Jacques Friedel and the physics of metals and alloys [J]. C. R. Phys., 2016, 17: 276
[37] Gurney C. Report of a conference on the strength solids (1947) [J]. Nature, 1949, 163: 117
[38] Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41B: 659
[39] Conrad H, de Meester B, Döner M, et al. Strengthening of alpha titanium by the interstitial solutes C, N, and O [A]. Physics of Solid Solution Strengthening [M]. New York: Springer, 1975: 1
[40] de Meester B, Döner M, Conrad H. Deformation kinetics of the Ti-6Al-4V alloy at low temperatures [J]. Metall. Trans., 1975, 6A: 65
[41] Wang W J. Spinodal decomposition and its effect on mechanical properties of Ti2448 alloy [D]. Hefei: University of Science and Technology of China, 2022
[41] 王伟杰. Ti2448合金的成分分解和组织性能研究 [D]. 合肥: 中国科学技术大学, 2022
[42] Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
[43] Nembach E. Precipitation hardening caused by a difference in shear modulus between particle and matrix [J]. Phys. Status Solidi, 1983, 78A: 571
[44] Kato M. Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
[45] Wei Q Q, Wang L Q, Fu Y F, et al. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy [J]. Mater. Des., 2011, 32: 2934
[46] Chong Y, Gholizadeh R, Tsuru T, et al. Grain refinement in titanium prevents low temperature oxygen embrittlement [J]. Nat. Commun., 2023, 14: 404
[1] 张晓晨, 李静, 李长记, 熊良银, 刘实. Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
[2] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[3] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[4] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[5] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[6] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[7] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[8] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[9] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[10] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[11] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[12] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[13] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[14] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[15] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.