Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1803-1816    DOI: 10.11900/0412.1961.2024.00230
  研究论文 本期目录 | 过刊浏览 |
LPSO相含量对挤压态Mg-Y-Zn-Mn合金耐腐蚀性能的影响
江舒佳1, 杨宏冉1, 李传强1(), 王乃光1, 王德升2,3()
1 广东工业大学 材料与能源学院 广州 510006
2 洛阳船舶材料研究所 海洋腐蚀与防护全国重点实验室 洛阳 471023
3 上海交通大学 材料科学与工程学院 上海 200240
Effect of Long-Period Stacking Ordered Phase Content on the Corrosion Resistance of As-Extruded Mg-Y-Zn-Mn Alloy
JIANG Shujia1, YANG Hongran1, LI Chuanqiang1(), WANG Naiguang1, WANG Desheng2,3()
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Luoyang 471023, China
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

江舒佳, 杨宏冉, 李传强, 王乃光, 王德升. LPSO相含量对挤压态Mg-Y-Zn-Mn合金耐腐蚀性能的影响[J]. 金属学报, 2025, 61(12): 1803-1816.
Shujia JIANG, Hongran YANG, Chuanqiang LI, Naiguang WANG, Desheng WANG. Effect of Long-Period Stacking Ordered Phase Content on the Corrosion Resistance of As-Extruded Mg-Y-Zn-Mn Alloy[J]. Acta Metall Sin, 2025, 61(12): 1803-1816.

全文: PDF(7163 KB)   HTML
摘要: 

含长周期堆垛有序(LPSO)结构的Mg-Y-Zn系合金具有优异的力学性能,但LPSO相含量对挤压态镁合金耐腐蚀性能的影响尚不清楚。本工作通过控制Zn和Y含量来调控LPSO相含量,研究挤压态Mg-Y-Zn-Mn合金的耐腐蚀性能,揭示LPSO相含量及其形态对挤压态镁合金耐腐蚀性能的影响规律;系统地研究了具有不同含量LPSO相的挤压态Mg-xY-yZn-0.1Mn (x = 2、4、8,质量分数,%;x / y = 2)合金的微观组织和耐腐蚀性能。结果表明,LPSO相含量随Zn、Y含量的增加而增多,其中Zn、Y含量最少的Mg-2Y-1Zn-0.1Mn (WZ21M)合金中的LPSO相为细小块状;Zn、Y含量较多的Mg-4Y-2Zn-0.1Mn (WZ42M)中的LPSO相沿挤压方向呈流线分布;Mg-8Y-4Zn-0.1Mn (WZ84M)合金中LPSO相最多,也呈流线分布,但其相邻LPSO相的间距明显减小。在3.5%NaCl溶液中的腐蚀实验结果表明,3种合金的耐腐蚀性能顺序是:WZ84M < WZ42M < WZ21M,LPSO相含量最多的WZ84M合金表现出最差的耐腐蚀性能,这主要归因于大量的LPSO相增强了微电偶效应,而流线分布的LPSO相不能有效阻碍腐蚀扩展。

关键词 Mg-Y-Zn合金LPSO相微观组织耐腐蚀性能    
Abstract

Mg alloys with high-strength and long-period stacking ordered (LPSO) phases are promising materials for lightweight structural applications because of their exceptional properties. However, corrosion remains a major challenge that limits their widespread use. The influence of the LPSO phase on the corrosion behavior of these alloys is substantial. On one hand, the microgalvanic effect between the LPSO phase and α-Mg matrix can accelerate corrosion. On the other hand, the LPSO phase may serve as an effective barrier that hinders the spread of corrosion in as-cast Mg alloys. Although the distribution of the LPSO phases considerably influences the corrosion resistance, the relationship between the LPSO phase content and the corrosion resistance remains poorly understood. In this work, a series of as-extruded Mg-xY-yZn-0.1Mn (x = 2, 4, and 8, mass fraction, %; x / y = 2) alloys with varying LPSO contents and morphologies were prepared, and their corrosion resistance were investigated in detail. Microstructural analyses were conducted using OM, SEM, and XRD. Corrosion resistance was evaluated through hydrogen evolution, mass loss, and electrochemical testing. Corrosion morphologies were examined using OM, SEM, confocal laser scanning microscopy (CLSM), while the local corrosion potential was analyzed using scanning Kelvin probe force microscopy (SKPFM). The results showed that the alloys primarily consisted of α-Mg and LPSO phases. The volume fraction of LPSO increased with the elevation of Zn and Y contents, and the morphology of the LPSO phases varied among the alloys. In the Mg-2Y-1Zn-0.1Mn (WZ21M) alloy, which exhibited the lowest Zn and Y contents, the LPSO phases appeared as small blocks. In contrast, the Mg-4Y-2Zn-0.1Mn (WZ42M) alloy, with moderate Zn and Y contents, featured LPSO phases arranged zonally along the extrusion direction. The Mg-8Y-4Zn-0.1Mn (WZ84M) alloy, which exhibited the highest LPSO content, also exhibited a zonal distribution of LPSO phases but with a considerably reduced spacing between adjacent phases. Corrosion tests performed in a 3.5%NaCl (mass fraction) solution revealed that the corrosion resistance decreased in the following order: WZ84M < WZ42M < WZ21M. The WZ21M alloy, exhibited a smoother discharge process and a more negative discharge potential across different current densities, indicating higher corrosion resistance compared to the WZ42M and WZ84M alloys. Conversely, the WZ84M alloy, showed the poorest corrosion resistance due to the pronounced microgalvanic effect between the LPSO phase and α-Mg matrix. The deformed LPSO phases in the as-extruded alloy were less effective in inhibiting corrosion spread. The WZ21M alloy benefited from reduced microgalvanic effects, leading to improved corrosion resistance. Therefore, the corrosion resistance of as-extruded Mg-Y-Zn-Mn alloys is inversely related to the LPSO content, with higher LPSO contents generally resulting in decreased resistance due to intensified microgalvanic effects. Additionally, the morphology of the LPSO phase plays a critical role in determining corrosion resistance.

Key wordsMg-Y-Zn alloy    LPSO phase    microstructure    corrosion resistance
收稿日期: 2024-07-10     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52171067);广东省自然科学基金项目(2024A1515030065);广东省自然科学基金项目(2023A1515012299);广东省科技计划国际科技合作项目(2023A0505050152);广州市基础与应用基础研究项目(2024A04J6299);广州市青年科技人才托举工程项目(QT2024-012)
通讯作者: 李传强,chuanqiang.li@gdut.edu.cn,主要从事镁合金材料微观组织、力学与腐蚀性能研究; 王德升,wangdesheng07@163.com,主要从事船舶用轻合金及应用性能研究
Corresponding author: LI Chuanqiang, associate professor, Tel: 13060861457, E-mail: chuanqiang.li@gdut.edu.cn; WANG Desheng, senior engineer, Tel: 15038673657, E-mail: wangdesheng07@163.com
作者简介: 江舒佳,女,1999年生,硕士生
图1  样品测试面的取样示意图
图2  挤压态Mg-2Y-1Zn-0.1Mn (WZ21M)、Mg-4Y-2Zn-0.1Mn (WZ42M)和Mg-8Y-4Zn-0.1Mn (WZ84M)合金的XRD谱
图3  挤压态WZ21M、WZ42M和WZ84M合金的OM像
图4  挤压态WZ21M、WZ42M和WZ84M合金的SEM像
图5  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl溶液中的析氢速率和失重速率
图6  挤压态WZ21M、WZ42M和WZ84M合金的极化曲线、电化学阻抗谱(EIS)及等效电路
AlloyEcorr (vs SCE) / Vicorr / (μA·cm-2)
WZ21M-1.7126.49
WZ42M-1.6138.95
WZ84M-1.5845.60
表1  挤压态WZ21M、WZ42M和WZ84M合金极化曲线拟合结果
Alloy

Rs

Ω·cm2

Rt

Ω·cm2

Ydl

μΩ-1·cm-2·sndl

ndl

Rf

Ω·cm2

Yf

μΩ-1·cm-2·snf

nf

RL

Ω·cm2

L

H·cm-2

WZ21M24.4606.013.400.93149.26200.30.872131.031598
WZ42M25.2511.218.050.93291.15076.90.871078.013511
WZ84M24.3459.416.140.94147.86509.70.812345.016867
表2  挤压态WZ21M、WZ42M和WZ84M合金EIS拟合结果
图7  挤压态WZ21M、WZ42M和WZ84M合金在不同电流密度下的放电曲线
图8  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl溶液中浸泡不同时间后的OM原位观察像
图9  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl溶液中浸泡1 h并去除腐蚀产物后的SEM像
图10  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl溶液中浸泡24 h并去除腐蚀产物后的SEM像
图11  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl溶液中浸泡24 h并除去腐蚀产物后的三维腐蚀形貌
图12  挤压态WZ21M、WZ42M和WZ84M合金在3.5%NaCl 溶液中浸泡24 h并去除腐蚀产物的截面SEM像
图13  挤压态WZ21M、WZ42M和WZ84M合金的SKPFM测试结果
[1] Luo A A. Applications: Aerospace, Automotive and other structural applications of magnesium [A]. Fundamentals of Magnesium Alloy Metallurgy: A Volume in Woodhead Publishing Series in Metals and Surface Engineering [M]. Sutton: Woodhead Publishing, 2013: 266
[2] Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system [J]. J. Mater. Res., 2001, 16: 1894
[3] Itoi T, Takahashi K, Moriyama H, et al. A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling [J]. Scr. Mater., 2008, 59: 1155
[4] Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
[4] 程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
[5] Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
[5] 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
[6] Deng B B, Liang D H, Li C Q, et al. Effect of Zn addition on the stress corrosion cracking of as-cast BCC Mg-11Li based alloys [J]. Corros. Sci., 2024, 227: 111707
[7] Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
[7] 王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
[8] Hagihara K, Ueyama R, Yamasaki M, et al. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates [J]. Acta Mater., 2021, 209: 116797
[9] Yang Y W, Ling C R, Li Y G, et al. Microstructure development and biodegradation behavior of additively manufactured Mg-Zn-Gd alloy with LPSO structure [J]. J. Mater. Sci. Technol., 2023, 144: 1
[10] Li C Z, Liu H, Xin Y C, et al. Achieving ultra-high strength using densely ultra-fine LPSO phase [J]. J. Mater. Sci. Technol., 2022, 129: 135
[11] Li C Q, Li X, Ke X T, et al. Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn alloy containing long period stacking ordered (LPSO) structure through homogenization treatment [J]. Corros. Sci., 2024, 228: 111829
[12] Xi G Q, Mou Y, Ma Y L, et al. Effect of volume fraction of 18R-LPSO phase on corrosion resistance of Mg-Zn-Y alloys [J]. Trans. Nonferrous Met. Soc. China., 2023, 33: 454
[13] Wang L S, Jiang J H, Yuan T, et al. Recent progress on corrosion behavior and mechanism of Mg-RE based alloys with long period stacking ordered structure [J]. Met. Mater. Int., 2020, 26: 551
[14] Geshani M S, Mahmoud Kalayeh P, Asadi A H, et al. A review of Mg alloys containing long-period stacking ordered (LPSO) structures with insight into the application of friction stir processing [J]. J. Mater. Res. Technol., 2023, 24: 4945
[15] Zeng Y, Jiang B, Zhang M X, et al. Effect of Mg24Y5 intermetallic particles on grain refinement of Mg-9Li alloy [J]. Intermetallics, 2014, 45: 18
[16] Mayama T, Agnew S R, Hagihara K, et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys [J]. Int. J. Plast., 2022, 154: 103294
[17] Liu J, Yang L X, Zhang C Y, et al. Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys [J]. J. Alloys Compd., 2019, 782: 648
[18] Li C Q, Xu D K, Zeng Z R, et al. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Des., 2017, 121: 430
[19] Liu B S, Yang J A, Wang Z H, et al. Effect of Y/Zn ratio on microstructure and properties of as-extruded Mg-Y-Zn alloys [J]. Mater. Res. Express, 2020, 7: 036530
[20] Yamasaki M, Shi Z M, Atrens A, et al. Influence of crystallographic orientation and Al alloying on the corrosion behaviour of extruded α-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure [J]. Corros. Sci., 2022, 200: 110237
[21] Li D, Zhang J S, Que Z P, et al. Effects of Mn on the microstructure and mechanical properties of long period stacking ordered Mg95Zn2.5Y2.5 alloy [J]. Mater. Lett., 2013, 109: 46
[22] Hao J Q, Zhang J S, Li B Q, et al. Effects of 14H LPSO phase on the dynamic recrystallization and work hardening behaviors of an extruded Mg-Zn-Y-Mn alloy [J]. Mater. Sci. Eng., 2021, A804: 140727
[23] Liang D H, Chen M C, Li C Q, et al. Mechanical property and anisotropy of as-extruded Mg-Zn-Y-Mn alloys with different volume fraction of long-period stacking ordered (LPSO) phase [J]. J. Rare Earths, 2024, 42: 2259
[24] Dai C N, Zhang S L, Wang Y, et al. Elucidation of the corrosion rate enhancement mechanism in Mg-Er-Gd-Ni alloys with high volume fraction of LPSO phase and different Gd contents after extrusion [J]. J. Mater. Res. Technol., 2023, 27: 522
[25] Sun Y H, Wang R C, Peng C Q, et al. Corrosion behavior and surface treatment of superlight Mg-Li alloys [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1455
[26] Li C Q, Deng B B, Dong L J, et al. Effect of Zn addition on the corrosion behaviours of as-cast BCC Mg-11Li based alloys in NaCl solution [J]. Mater. Des. 2022, 221: 111019
[27] Wang D, Zhou P, Zhang Y, et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Designing of the high corrosion-resistant magnesium alloy [J]. Corros. Sci., 2023, 222: 111428
[28] Hao X B, Cheng W L, Li J, et al. Electrochemical behaviors and discharge performance of the low-alloyed Mg-Ag alloy as anode for Mg-Air battery [J]. Acta Metall. Sin., 2025, 61: 837
[28] 郝旭邦, 程伟丽, 李 戬 等. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能 [J]. 金属学报, 2025, 61: 837
[29] Cheng W L, Gu X J, Cheng S M, et al. Discharge performance and electrochemical behaviors of the extruded Mg-2Bi-0.5Ca-0.5 in alloy as anode for Mg-air battery [J]. Acta Metall. Sin., 2021, 57: 623
[29] 程伟丽, 谷雄杰, 成世明 等. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为 [J]. 金属学报, 2021, 57: 623
[30] Chen X R, Zou Q, Le Q C, et al. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery [J]. J. Power Sources, 2020, 451: 227807
[31] Bao L, Zhang Z Q, Le Q C, et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios [J]. J. Alloys Compd., 2017, 712, 15
[32] Zong X M, Zhang J S, Liu W, et al. Effects of Li on microstructures, mechanical, and biocorrosion properties of biodegradable Mg94 - x Zn2Y4Li x alloys with long period stacking ordered phase [J]. Adv. Eng. Mater., 2017, 19: 1600606
[33] Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
[1] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[3] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[4] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[5] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[6] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[7] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[8] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[9] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[10] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[11] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[12] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[13] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[14] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[15] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.