|
|
|
| LPSO相含量对挤压态Mg-Y-Zn-Mn合金耐腐蚀性能的影响 |
江舒佳1, 杨宏冉1, 李传强1( ), 王乃光1, 王德升2,3( ) |
1 广东工业大学 材料与能源学院 广州 510006 2 洛阳船舶材料研究所 海洋腐蚀与防护全国重点实验室 洛阳 471023 3 上海交通大学 材料科学与工程学院 上海 200240 |
|
| Effect of Long-Period Stacking Ordered Phase Content on the Corrosion Resistance of As-Extruded Mg-Y-Zn-Mn Alloy |
JIANG Shujia1, YANG Hongran1, LI Chuanqiang1( ), WANG Naiguang1, WANG Desheng2,3( ) |
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China 2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Luoyang 471023, China 3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
江舒佳, 杨宏冉, 李传强, 王乃光, 王德升. LPSO相含量对挤压态Mg-Y-Zn-Mn合金耐腐蚀性能的影响[J]. 金属学报, 2025, 61(12): 1803-1816.
Shujia JIANG,
Hongran YANG,
Chuanqiang LI,
Naiguang WANG,
Desheng WANG.
Effect of Long-Period Stacking Ordered Phase Content on the Corrosion Resistance of As-Extruded Mg-Y-Zn-Mn Alloy[J]. Acta Metall Sin, 2025, 61(12): 1803-1816.
| [1] |
Luo A A. Applications: Aerospace, Automotive and other structural applications of magnesium [A]. Fundamentals of Magnesium Alloy Metallurgy: A Volume in Woodhead Publishing Series in Metals and Surface Engineering [M]. Sutton: Woodhead Publishing, 2013: 266
|
| [2] |
Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system [J]. J. Mater. Res., 2001, 16: 1894
|
| [3] |
Itoi T, Takahashi K, Moriyama H, et al. A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling [J]. Scr. Mater., 2008, 59: 1155
|
| [4] |
Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
|
| [4] |
程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
|
| [5] |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
|
| [5] |
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
|
| [6] |
Deng B B, Liang D H, Li C Q, et al. Effect of Zn addition on the stress corrosion cracking of as-cast BCC Mg-11Li based alloys [J]. Corros. Sci., 2024, 227: 111707
|
| [7] |
Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
|
| [7] |
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
|
| [8] |
Hagihara K, Ueyama R, Yamasaki M, et al. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates [J]. Acta Mater., 2021, 209: 116797
|
| [9] |
Yang Y W, Ling C R, Li Y G, et al. Microstructure development and biodegradation behavior of additively manufactured Mg-Zn-Gd alloy with LPSO structure [J]. J. Mater. Sci. Technol., 2023, 144: 1
|
| [10] |
Li C Z, Liu H, Xin Y C, et al. Achieving ultra-high strength using densely ultra-fine LPSO phase [J]. J. Mater. Sci. Technol., 2022, 129: 135
|
| [11] |
Li C Q, Li X, Ke X T, et al. Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn alloy containing long period stacking ordered (LPSO) structure through homogenization treatment [J]. Corros. Sci., 2024, 228: 111829
|
| [12] |
Xi G Q, Mou Y, Ma Y L, et al. Effect of volume fraction of 18R-LPSO phase on corrosion resistance of Mg-Zn-Y alloys [J]. Trans. Nonferrous Met. Soc. China., 2023, 33: 454
|
| [13] |
Wang L S, Jiang J H, Yuan T, et al. Recent progress on corrosion behavior and mechanism of Mg-RE based alloys with long period stacking ordered structure [J]. Met. Mater. Int., 2020, 26: 551
|
| [14] |
Geshani M S, Mahmoud Kalayeh P, Asadi A H, et al. A review of Mg alloys containing long-period stacking ordered (LPSO) structures with insight into the application of friction stir processing [J]. J. Mater. Res. Technol., 2023, 24: 4945
|
| [15] |
Zeng Y, Jiang B, Zhang M X, et al. Effect of Mg24Y5 intermetallic particles on grain refinement of Mg-9Li alloy [J]. Intermetallics, 2014, 45: 18
|
| [16] |
Mayama T, Agnew S R, Hagihara K, et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys [J]. Int. J. Plast., 2022, 154: 103294
|
| [17] |
Liu J, Yang L X, Zhang C Y, et al. Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys [J]. J. Alloys Compd., 2019, 782: 648
|
| [18] |
Li C Q, Xu D K, Zeng Z R, et al. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Des., 2017, 121: 430
|
| [19] |
Liu B S, Yang J A, Wang Z H, et al. Effect of Y/Zn ratio on microstructure and properties of as-extruded Mg-Y-Zn alloys [J]. Mater. Res. Express, 2020, 7: 036530
|
| [20] |
Yamasaki M, Shi Z M, Atrens A, et al. Influence of crystallographic orientation and Al alloying on the corrosion behaviour of extruded α-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure [J]. Corros. Sci., 2022, 200: 110237
|
| [21] |
Li D, Zhang J S, Que Z P, et al. Effects of Mn on the microstructure and mechanical properties of long period stacking ordered Mg95Zn2.5Y2.5 alloy [J]. Mater. Lett., 2013, 109: 46
|
| [22] |
Hao J Q, Zhang J S, Li B Q, et al. Effects of 14H LPSO phase on the dynamic recrystallization and work hardening behaviors of an extruded Mg-Zn-Y-Mn alloy [J]. Mater. Sci. Eng., 2021, A804: 140727
|
| [23] |
Liang D H, Chen M C, Li C Q, et al. Mechanical property and anisotropy of as-extruded Mg-Zn-Y-Mn alloys with different volume fraction of long-period stacking ordered (LPSO) phase [J]. J. Rare Earths, 2024, 42: 2259
|
| [24] |
Dai C N, Zhang S L, Wang Y, et al. Elucidation of the corrosion rate enhancement mechanism in Mg-Er-Gd-Ni alloys with high volume fraction of LPSO phase and different Gd contents after extrusion [J]. J. Mater. Res. Technol., 2023, 27: 522
|
| [25] |
Sun Y H, Wang R C, Peng C Q, et al. Corrosion behavior and surface treatment of superlight Mg-Li alloys [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1455
|
| [26] |
Li C Q, Deng B B, Dong L J, et al. Effect of Zn addition on the corrosion behaviours of as-cast BCC Mg-11Li based alloys in NaCl solution [J]. Mater. Des. 2022, 221: 111019
|
| [27] |
Wang D, Zhou P, Zhang Y, et al. Bridge for the thermodynamics and kinetics of electrochemical corrosion: Designing of the high corrosion-resistant magnesium alloy [J]. Corros. Sci., 2023, 222: 111428
|
| [28] |
Hao X B, Cheng W L, Li J, et al. Electrochemical behaviors and discharge performance of the low-alloyed Mg-Ag alloy as anode for Mg-Air battery [J]. Acta Metall. Sin., 2025, 61: 837
|
| [28] |
郝旭邦, 程伟丽, 李 戬 等. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能 [J]. 金属学报, 2025, 61: 837
|
| [29] |
Cheng W L, Gu X J, Cheng S M, et al. Discharge performance and electrochemical behaviors of the extruded Mg-2Bi-0.5Ca-0.5 in alloy as anode for Mg-air battery [J]. Acta Metall. Sin., 2021, 57: 623
|
| [29] |
程伟丽, 谷雄杰, 成世明 等. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为 [J]. 金属学报, 2021, 57: 623
|
| [30] |
Chen X R, Zou Q, Le Q C, et al. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery [J]. J. Power Sources, 2020, 451: 227807
|
| [31] |
Bao L, Zhang Z Q, Le Q C, et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios [J]. J. Alloys Compd., 2017, 712, 15
|
| [32] |
Zong X M, Zhang J S, Liu W, et al. Effects of Li on microstructures, mechanical, and biocorrosion properties of biodegradable Mg94 - x Zn2Y4Li x alloys with long period stacking ordered phase [J]. Adv. Eng. Mater., 2017, 19: 1600606
|
| [33] |
Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|