|
|
深海环境对钛合金应力腐蚀影响的研究进展 |
徐玮辰1,2( ), 佟向瑜1,2, 王优强2, 张斌斌1( ), 马超群1,2, 王秀通1,2 |
1 中国科学院海洋研究所 海洋关键材料全国重点实验室 青岛 266071 2 青岛理工大学 机械与汽车工程学院 青岛 266525 |
|
Research Progress on the Influence of the Deep-Sea Environment on the Stress Corrosion of Titanium Alloys |
XU Weichen1,2( ), TONG Xiangyu1,2, WANG Youqiang2, ZHANG Binbin1( ), MA Chaoqun1,2, WANG Xiutong1,2 |
1 State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China |
引用本文:
徐玮辰, 佟向瑜, 王优强, 张斌斌, 马超群, 王秀通. 深海环境对钛合金应力腐蚀影响的研究进展[J]. 金属学报, 2025, 61(10): 1469-1484.
Weichen XU,
Xiangyu TONG,
Youqiang WANG,
Binbin ZHANG,
Chaoqun MA,
Xiutong WANG.
Research Progress on the Influence of the Deep-Sea Environment on the Stress Corrosion of Titanium Alloys[J]. Acta Metall Sin, 2025, 61(10): 1469-1484.
[1] |
Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
|
[1] |
董月成, 方志刚, 常 辉 等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
|
[2] |
Wang K. Simulated deep-sea environment in titanium stress corrosion [D]. Harbin: Harbin Engineering University, 2014
|
[2] |
王 奎. 模拟深海环境钛合金应力腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014
|
[3] |
Zhou M, Wang Q, Wang Y X, et al. Effect of prewelding pretreatment on welding residual stress of titanium alloy thick plate [J]. Acta Metall. Sin., 2024, 60: 1064
doi: 10.11900/0412.1961.2024.00054
|
[3] |
周 牧, 王 倩, 王延绪 等. 焊前预处理对钛合金厚板焊接残余应力的影响 [J]. 金属学报, 2024, 60: 1064
|
[4] |
Liu J H, Tian S, Li S M, et al. Stress corrosion crack of new ultrahigh strength steel [J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 1164
|
[4] |
刘建华, 田 帅, 李松梅 等. 新型超高强度钢应力腐蚀断裂行为研究 [J]. 航空学报, 2011, 32: 1164
|
[5] |
Zhang R. The study on susceptibility to stress corrosion cracking and hydrogen embrittlement of titanium and titanium alloy in seawater [D]. Hohhot: Inner Mongolia University of Technology, 2013
|
[5] |
张 睿. 钛及钛合金在海水中的应力腐蚀及氢脆敏感性研究 [D]. 呼和浩特: 内蒙古工业大学, 2013
|
[6] |
Zhao Y, Wang J, Su F, et al. Hydrogen embrittlement susceptibility of Ti-6Al-4V alloys fabricated by electron beam melting in simulated deep-sea environment [J]. Corrosion, 2024, 80: 24
|
[7] |
Powell D T, Scully J C. Stress corrosion cracking of alpha titanium alloys at room temperature [J]. Corrosion, 1968, 24: 151
|
[8] |
Scully J C, Powell D T. The stress corrosion cracking mechanism of α-titanium alloys at room temperature [J]. Corros. Sci., 1970, 10: 719
|
[9] |
Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Inst., 2019, 40(12): 121
|
[9] |
房卫萍, 肖 铁, 张宇鹏 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40(12): 121
doi: 10.12073/j.hjxb.2019400324
|
[10] |
Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys [J]. J. Alloys Compd., 2005, 404-406: 621
|
[11] |
Zhang H X, Zhang F, Hao F Y, et al. Stress corrosion behavior and mechanism of Ti6321 alloy with different microstructures in stimulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112059
|
[12] |
de Souza K A, Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions [J]. Mater. Chem. Phys., 2007, 103: 351
|
[13] |
Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
|
[13] |
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
|
[14] |
Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Marine Sci., 2005, 29: 1
|
[14] |
许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29: 1
|
[15] |
Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
|
[15] |
郭为民, 孙明先, 邱 日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
doi: 10.11903/1002.6495.2016.288
|
[16] |
Ulanovskii I B. Corrosion of metals in the Atlantic Ocean [J]. Prot. Met., 1979, 15: 563
|
[17] |
Ulanovskii I B, Egorova V A. Metal corrosion at different depths in the sea [J]. Prot. Met., 1978, 14: 137
|
[18] |
Sawant S S, Venkat K, Wagh A B. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the Bay of Bengal [J]. Indian J. Technol., 1993, 31: 862
|
[19] |
Venkatesan R, Dwarakadasa E S, Ravindran M. A deep-sea corrosion study on titanium and Ti6Al4V alloy [J]. Corros. Prevent. Contr., 2004, 51: 98
|
[20] |
Luciano G, Letardi P, Traverso P, et al. Corrosion behaviour of Al, Cu, and Fe alloys in deep sea environment [J]. Metall. Ital., 2013, 105: 21
|
[21] |
Lin J H, Dan Z H, Lu J F, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments [J]. Rare Met. Mater. Eng., 2020, 49: 1090
|
[21] |
林俊辉, 淡振华, 陆嘉飞 等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望 [J]. 稀有金属材料与工程, 2020, 49: 1090
|
[22] |
Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean [J]. Dev. Appl. Mater., 2010, 25(1): 59
|
[22] |
彭文才, 侯 健, 郭为民. 铝合金深海腐蚀研究进展 [J]. 材料开发与应用, 2010, 25(1): 59
|
[23] |
Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
|
[23] |
侯 健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82
|
[24] |
Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
|
[24] |
周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
|
[25] |
Liu J, Li X B, Wang J. EIS characteristic of organic coating with artificial defects in simulated deep-sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 333
|
[25] |
刘 杰, 李相波, 王 佳. 在模拟深海高压环境中人工破损涂层的电化学阻抗谱响应特征 [J]. 腐蚀科学与防护技术, 2010, 22: 333
|
[26] |
Liu H C, Bai X H, Li Z, et al. Electrochemical evaluation of stress corrosion cracking susceptibility of Ti-6Al-3Nb-2Zr-1Mo alloy welded joint in simulated deep-sea environment [J]. Materials, 2022, 15: 3201
|
[27] |
Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
|
[27] |
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
|
[28] |
Liu R, Cui Y, Zhang B, et al. Unveiling the effect of hydrostatic pressure on the passive films of the deformed titanium alloy [J]. Corros. Sci., 2021, 190: 109705
|
[29] |
Li M, Hu L Y, Hu K F, et al. Crevice corrosion behavior of 316L stainless steel in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1375
|
[29] |
李 敏, 胡凌越, 胡科峰 等. 316L不锈钢在深海环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1375
|
[30] |
Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components [J]. Int. J. Fatigue, 2019, 126: 90
|
[31] |
Xu Y Z, Zhou Q P, Liu L, et al. Exploring the corrosion performances of carbon steel in flowing natural sea water and synthetic sea waters [J]. Corros. Eng. Sci. Technol., 2020, 55: 579
|
[32] |
Yi Q L, Yu H Y, Wang X L, et al. Production of viable tetraploid olive flounder (Paralichthys olivaceus) by hydrostatic pressure shock [J]. Oceanol. Limnol. Sin., 2012, 43: 382
|
[32] |
衣启麟, 于海洋, 王兴莲 等. 静水压力诱导牙鲆(Paralichthys olivaceus)四倍体的条件优化 [J]. 海洋与湖沼, 2012, 43: 382
|
[33] |
Li G R, Chen X P, Zhou F H, et al. Self-powered soft robot in the Mariana Trench [J]. Nature, 2021, 591: 66
|
[34] |
Meng X N, Chen X, Wu M, et al. Effect of hydrostatic pressure on electrochemical behavior of X100 steel in NaHCO3 + NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 219
|
[34] |
孟向楠, 陈 旭, 吴 明 等. 静水压力对X100钢在NaHCO3 + NaCl溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 219
doi: 10.11902/1005.4537.2015.082
|
[35] |
Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
|
[36] |
Paul S, Yadav K. Corrosion behavior of surface-treated implant Ti-6Al-4V by electrochemical polarization and impedance studies [J]. J. Mater. Eng. Perform., 2011, 20: 422
|
[37] |
Xiong X L, Zhou Q J, Li J X, et al. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure [J]. Electrochim. Acta, 2017, 247: 1019
|
[38] |
Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
|
[39] |
Zhao Y, Liu Y C, Gai X, et al. Investigating the stress corrosion cracking (SCC) susceptibility of Ti-6Al-4V alloys fabricated by electron beam melting in deep-sea environment [J]. Corrosion, 2021, 77: 853
|
[40] |
Li G Y, Han Z H, Tian J W, et al. Alternating stress field and superhardness effect in TiN/NbN superlattice films [J]. J. Vac. Sci. Technol., 2002, 20A: 674
|
[41] |
Srivatsan T S, Soboyejo W O, Lederich R J. The cyclic fatigue and fracture behavior of a titanium alloy metal matrix composite [J]. Eng. Fract. Mech., 1995, 52: 467
|
[42] |
Frost N E. Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading [J]. J. Mech. Eng. Sci., 1960, 2: 109
|
[43] |
Liu Z M, Zhu P L, Mao X N, et al. Effect of Si addition on the microstructure and creep properties of the forged titanium alloy [J]. Mater. Chem. Phys., 2024, 317: 129212
|
[44] |
Zhang B, Tian D, Song Z M, et al. Research progress in dwell fatigue service reliability of titanium alloys for pressure shell of deep-sea submersible [J]. Acta Metall. Sin., 2023, 59: 713
doi: 10.11900/0412.1961.2022.00441
|
[44] |
张 滨, 田 达, 宋竹满 等. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展 [J]. 金属学报, 2023, 59: 713
|
[45] |
Zhan C J, Yu T H, Koo C H. Creep behavior of Ti-40Al-10Nb titanium aluminide intermetallic alloy [J]. Mater. Sci. Eng., 2006, A435-436: 698
|
[46] |
Luo X, Yang C, Li D D, et al. Laser powder bed fusion of beta-type titanium alloys for biomedical application: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2024, 37: 17
|
[47] |
He X J, Li J M. Linear interpolation for image conversion between square structure and hexagonal structure [J]. Proc. Appl. Math. Mech., 2007, 7: 1011001
|
[48] |
Stoltz R E, Pelloux R M. The Bauschinger effect in precipitation strengthened aluminum alloys [J]. Metall. Trans., 1976, 7A: 1295
|
[49] |
Huang H, Zhang Y, Lu J F, et al. Room-temperature compressive creep behavior of Ti-6Al-4V ELI alloys with basketweave microstructure under an alternating compressive stress [J]. Mater. Sci., 2023, 29: 209
|
[50] |
Guo Y H, Liu G, Song Y Z. Creep behavior of titanium alloy used in deep-sea pressure shell considering tensile/compressive asymmetry: Experiments and numerical modeling [J]. Ocean Eng., 2023, 288: 116095
|
[51] |
Soboyejo W O, Obayemi J D, Annan E, et al. Review of high temperature ceramics for aerospace applications [J]. Adv. Mater. Res., 2015, 1132: 385
|
[52] |
Tsimplis M N, Baker T F. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? [J]. Geophys. Res. Lett., 2000, 27: 1731
|
[53] |
Zhang Y J, Hu H W, Yan H, et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils [J]. Sci. Total Environ., 2019, 668: 193
|
[54] |
Khaled M M, Yilbas B S, Al-Qaradawi I Y, et al. Corrosion properties of duplex treated Ti-6Al-4V alloy in chloride media using electrochemical and positron annihilation spectroscopy techniques [J]. Surf. Coat. Technol., 2006, 201: 932
|
[55] |
Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
|
[56] |
Schumacher M M. Seawater Corrosion Handbook [M]. Park Ridge: Noyes Data Corporation, 1979: 1
|
[57] |
Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
|
[58] |
Kalienko M S, Zhelnina A V, Popov A A. A study of gas-saturated layer after oxidation of alloy Ti6242S at 500-800 oC [J]. Met. Sci. Heat Treat., 2024, 65: 563
|
[59] |
Sun J Y, Peng W S, Xing S H. Combined effect of stress and dissolved oxygen on corrosion behavior of Ni-Cr-Mo-V high strength steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 755
|
[59] |
孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 755
doi: 10.11902/1005.4537.2023.213
|
[60] |
Lu Z L, Guo X P. Preliminary study of the corrosion inhibitor adsorption behavior of dodecylamine on N80 steel surface in CO2 saturated saline solutions with different pH values [A]. Proceedings of the 14th National Symposium on Corrosion Inhibitors [C]. Beihai: Corrosion Inhibitors Professional Committee of China Corrosion and Protection Society, 2006: 40
|
[60] |
鲁照玲, 郭兴蓬. 不同pH值的CO2饱和盐水溶液中十二胺在N80钢表面缓蚀吸附行为初探 [A]. 第十四届全国缓蚀剂学术讨论会论文集 [C]. 北海: 中国腐蚀与防护学会缓蚀剂专业委员会, 2006: 40
|
[61] |
Gao K, Zhang Y, Yi J H, et al. Overview of surface modification techniques for titanium alloys in modern material science: A comprehensive analysis [J]. Coatings, 2024, 14: 148
|
[62] |
Townsend H E. Hydrogen sulfide stress corrosion cracking of high strength steel wire [J]. Corrosion, 1972, 28: 39
|
[63] |
Li N, Wang L, Zhou Z, et al. The interaction mechanism of titanium alloy TC4 between passive film and sulfate reducing bacteria biofilm in marine environment [J]. Appl. Surf. Sci., 2025, 690: 162620
|
[64] |
Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
|
[64] |
柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175
doi: 10.11902/1005.4537.2021.050
|
[65] |
Sun J, Li X X, Zhang J H, et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in β→α phase transformation in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2020, 56: 1113
|
[65] |
孙 佳, 李学雄, 张金虎 等. Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟 [J]. 金属学报, 2020, 56: 1113
|
[66] |
Zhao Y Q, Xin S W, Zeng W D. Effect of major alloying elements on microstructure and mechanical properties of a highly β stabilized titanium alloy [J]. J. Alloy. Compd., 2009, 481: 190
|
[67] |
Feeney J A, Blackburn M J. Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti-11.5Mo-6Zr-4.5Sn) [J]. Metall. Trans., 1970, 1: 3309
|
[68] |
Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
|
[68] |
张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1
|
[69] |
Zhang J, Zhu Z H, Zhang S, et al. Microstructure and mechanical properties of Ti-Al-Mo-Nb-V metastable β-type alloys alloying with high Al content [J]. Mater. Rep., 2018, 38: 22040297
|
[69] |
张 健, 朱智浩, 张 爽 等. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能 [J]. 材料导报, 2024, 38: 22040297
|
[70] |
Lee E B, Han M K, Kim B J, et al. Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys [J]. Int. J. Mater. Res., 2014, 105: 847
|
[71] |
Rho S Y, Lee J S, Ando K, et al. Electrochemical degradation of the hydrogen-absorption-induced passive film on an Ni-Ti superelastic alloy in an NaCl solution [J]. Electrochim. Acta, 2024, 484: 144022
|
[72] |
Sharma R K, Das R K, Kumar S R. Effect of chromium-titanium on corrosion and erosion of HVOF coating [J]. Surf. Eng., 2022, 38: 366
|
[73] |
National Materials Corrosion and Protection Scientific Data Center. Comprehensive analysis of corrosion resistance characteristics of titanium materials [EB/OL]. (2017-11-07)[2024-09-19]. https://corrdata.org.cn/news/industry/2017-11-07/167371.html
|
[73] |
国家材料腐蚀与防护科学数据中心. 钛材料耐腐蚀特性的全面分析 [EB/OL]. (2017-11-07)[2024-09-19]. https://corrdata.org.cn/news/industry/2017-11-07/167371.html
|
[74] |
Gamal H, Elshahawy A M, Medany S S, et al. Recent advances of vanadium oxides and their derivatives in supercapacitor applications: A comprehensive review [J]. J. Energy Storage, 2024, 76: 109788
|
[75] |
Liu H, Wang Z X, Cheng J, et al. Nb-content-dependent passivation behavior of Ti-Nb alloys for biomedical applications [J]. J. Mater. Res. Technol., 2023, 27: 7882
|
[76] |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
|
[77] |
Liang E Q, Huang S S, Ma Y J, et al. The influence of Fe on the mechanical properties of Ti-6Al-4V ELI alloy [J]. Chin. J. Mater. Res., 2016, 30: 299
doi: 10.11901/1005.3093.2015.353
|
[77] |
梁恩泉, 黄森森, 马英杰 等. Fe对Ti-6Al-4VELI合金力学性能的影响 [J]. 材料研究学报, 2016, 30: 299
doi: 10.11901/1005.3093.2015.353
|
[78] |
Bian R G, Cui W C, Wan Z Q, et al. Effects of initial cracks and loading sequence on fatigue crack growth of the deepwater structures based on two-parameter unified approach [J]. J. Ship Mech., 2010, 14: 516
|
[78] |
卞如冈, 崔维成, 万正权 等. 基于双参数统一方法的深海结构物疲劳裂纹扩展影响参数研究 [J]. 船舶力学, 2010, 14: 516
|
[79] |
Lin Y, Feng G Q, Ren H L, et al. Research on collision strength for deep sea submersible structures [A]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering [C]. Shanghai: ASME, 2010: 461
|
[80] |
Cheng Y F. Stress Corrosion Cracking of Pipelines [M]. Hoboken: John Wiley & Sons, Inc., 2013: 1
|
[81] |
Noyan I C, Cohen J B. Residual Stress: Measurement by Diffraction and Interpretation [M]. New York: Springer, 1987: 1
|
[82] |
Huang S D, Xu B, Liu C L, et al. Measurement of residual stress to titanium alloy tube made by cold radial forging [J]. J. Netshape Form. Eng., 2011, 3(6): 85
|
[82] |
黄少东, 许 彪, 刘川林 等. 冷径向精锻钛合金管残余应力测试 [J]. 精密成形工程, 2011, 3(6): 85
|
[83] |
Liu R, Xie Y S, Jin Y, et al. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films [J]. Acta Mater., 2023, 252: 118946
|
[84] |
Lindemann J, Wagner L. Microtextural effects on mechanical properties of duplex microstructures in (α + β) titanium alloys [J]. Mater. Sci. Eng., 1999, A263: 137
|
[85] |
Rong X D, Huang L J, Wang B, et al. Effects of heat treatment on microstructure and mechanical properties of Ti60 alloy with Widmansätten microstructure [J] Trans. Mater. Heat Treat., 2015, 36(10): 39
|
[85] |
戎旭东, 黄陆军, 王 博 等. 热处理对魏氏组织Ti60合金组织与性能的影响 [J]. 材料热处理学报, 2015, 36(10): 39
|
[86] |
Yang J, Huang S S, Yin H, et al. Inhomogeneity analyses of microstructure and mechanical properties of TC21 titanium alloy variable cross-section die forgings for aviation [J]. Acta Metall. Sin., 2024, 60: 333
doi: 10.11900/0412.1961.2022.00313
|
[86] |
杨 杰, 黄森森, 尹 慧 等. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析 [J]. 金属学报, 2024, 60: 333
|
[87] |
Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
|
[87] |
朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
doi: 10.11868/j.issn.1005-5053.2020.000086
|
[88] |
Bathini U, Srivatsan T S, Patnaik A, et al. A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: Influence of orientation and microstructure [J]. J. Mater. Eng. Perform., 2010, 19: 1172
|
[89] |
Yang W T, Long X Q. Special corrosion types of titanium alloy used in civil aircraft [J]. Total Corros. Control, 2008, 22(2): 42
|
[89] |
杨文涛, 隆小庆. 飞机上钛合金的特殊腐蚀形式 [J]. 全面腐蚀控制, 2008, 22(2): 42
|
[90] |
Xu Y L, Zhang X J, Lu X Y, et al. Influences of microstructures and macrozones on the stress corrosion cracking sensitivity of a near alpha titanium alloy [J]. Corros. Sci., 2024, 232: 112015
|
[91] |
Dong Y C, Huang S, Wang Y Y, et al. Stress corrosion cracking of TC4 ELI alloy with different microstructure in 3.5% NaCl solution [J]. Mater. Charact., 2022, 194: 112357
|
[92] |
Mythili R, Shankar A R, Saroja S, et al. Influence of microstructure on corrosion behavior of Ti-5%Ta-1.8%Nb alloy [J]. J. Mater. Sci., 2007, 42: 5924
|
[93] |
Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method [J]. Acta Metall. Sin., 2007, 43: 249
|
[93] |
刘贵立. 递归法研究钛合金应力腐蚀机理 [J]. 金属学报, 2007, 43: 249
|
[94] |
Li Z, Gobbi S L, Norris I, et al. Laser welding techniques for titanium alloy sheet [J]. J. Mater. Process. Technol., 1997, 65: 203
|
[95] |
Xu C, Sheng G M, Wang H, et al. Tungsten inert gas welding-brazing of AZ31B magnesium alloy to TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2016, 32: 167
doi: 10.1016/j.jmst.2015.12.003
|
[96] |
Auwal S T, Ramesh S, Yusof F, et al. A review on laser beam welding of titanium alloys [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 1071
|
[97] |
Casavola C, Pappalettere C, Tattoli F. Experimental and numerical study of static and fatigue properties of titanium alloy welded joints [J]. Mech. Mater., 2009, 41: 231
|
[98] |
Gao F Y, Sun Z J, Yang S L, et al. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution [J]. Mater. Charact., 2022, 192: 112126
|
[99] |
Jiang C Y, Wang T, Yan K, et al. Study on welding application of titanium alloys for ships [J]. Dev. Appl. Mater., 1992, 7(6): 16
|
[99] |
蒋成禹, 汪 汀, 严 铿 等. 舰船用钛合金的焊接应用研究 [J]. 材料开发与应用, 1992, 7(6): 16
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|