Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1449-1468    DOI: 10.11900/0412.1961.2024.00396
  综述 本期目录 | 过刊浏览 |
冷喷涂后处理技术及其研究进展
刘瑞良(), 刘泉利, 李富霖
哈尔滨工程大学 材料科学与化学工程学院 超轻材料与表面技术教育部重点实验室 哈尔滨 150001
Post-Treatment Technologies of Cold Spray and Their Research Advance
LIU Ruiliang(), LIU Quanli, LI Fulin
Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
引用本文:

刘瑞良, 刘泉利, 李富霖. 冷喷涂后处理技术及其研究进展[J]. 金属学报, 2025, 61(10): 1449-1468.
Ruiliang LIU, Quanli LIU, Fulin LI. Post-Treatment Technologies of Cold Spray and Their Research Advance[J]. Acta Metall Sin, 2025, 61(10): 1449-1468.

全文: PDF(5334 KB)   HTML
摘要: 

冷喷涂是一种利用超音速气流加速固态粉末粒子,通过高速撞击产生的塑性变形制备涂层或块体材料的固态沉积技术。在冷喷涂过程中材料始终保持固态,避免了热喷涂过程中由于高温引起的氧化、晶粒长大和相变等问题,适合温度敏感的材料(如Al、Cu和Ti等金属);此外,冷喷涂技术还能制备一些传统方法难以制备的材料(如镍基高温合金和新型高熵合金等)及其涂层。因此,冷喷涂技术具有广泛的材料适用性,既可以用于修复和涂层制备,也可以用于增材制造。然而,通过冷喷涂技术制备的涂层或材料存在致密度低、组织不均匀以及涂层结合强度差等问题。通过粉末前处理、涂层和材料的后处理等方法可对涂层组织结构和性能进行有效调控,实现高质量涂层或材料的制备及高性能应用。基于此,本文对冷喷涂后处理技术的种类、特点及其研究进展进行了全面综述,内容涉及目前已报道的各种冷喷涂涂层和材料(纯金属及其合金、不锈钢、高熵合金及复合材料等)的后处理技术(热处理、激光重熔、感应重熔、热等静压、热轧、搅拌摩擦以及电脉冲等),重点对各种冷喷涂后处理技术的优势、特点及存在的问题进行总结和分析,并对各后处理技术的发展方向进行展望。

关键词 冷喷涂涂层增材制造后处理技术显微组织    
Abstract

Cold spray is a solid deposition technology that utilises supersonic airflow to accelerate solid powder particles, facilitating the coating or fabrication of bulk materials through plastic deformation from high-speed impacts. During the cold spraying process, materials remain in a solid state, thus avoiding problems such as oxidation, grain growth, and phase transformation that can occur with high temperatures in thermal spraying. This makes cold spray particularly suitable for temperature-sensitive materials such as aluminium, copper, titanium, and other metals. In addition, this method can effectively deposit materials and coatings that are challenging to handle with traditional techniques including nickel-based high-temperature alloys and novel high-entropy alloys. Despite its many advantages, including its use with a wide range of materials for repairing and coating fabrication and its application to additive manufacturing, cold spray faces challenges such as low coating density, inhomogeneous microstructures, and weak adhesive coating strength. However, the microstructure and properties of coatings and materials can be effectively enhanced through the pretreatment of powders and/or post-treatment of the coatings and materials. This leads to the high-quality preparation and performance of coatings or materials. Under this context, this article provides a comprehensive review of the types, characteristics, and research advancements in post-treatment technologies for cold spraying. It covers various documented post-treatment methods, including heat treatment, laser remelting, induction remelting, hot isostatic pressing, hot rolling, friction stir, and electric pulse, applied to cold-sprayed coatings or materials, which encompass pure metals and their alloys, stainless steel, high-entropy alloys, and composite materials. Specifically, the article aims to summarize and analyze the advantages, characteristics, and existing challenges of various post-treatment technologies, while also exploring future research directions in this field.

Key wordscold spray    coating    additive manufacturing    post-treatment technology    microstructure
收稿日期: 2024-11-21     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(52371060);黑龙江省自然科学基金项目(LH2023E060)
通讯作者: 刘瑞良,liuruiliang@hrbeu.edu.cn,主要从事先进材料设计与表面改性研究
作者简介: 刘瑞良,男,1983年生,副教授,博士
图 1  热处理过程中致密和多孔冷喷涂涂层结构转变示意图[6]
图2  高温热处理过程中冷喷涂涂层中变形Ti6Al4V颗粒的显微组织演变[44]及退火过程中Cu晶粒变化[38]示意图
图3  不同温度、时间热处理后冷喷涂316L不锈钢涂层的微观组织演变[48]
图4  不同激光功率下重熔前/后Al-Si涂层截面形貌的SEM像[53]
图5  不同后处理工艺下IN718涂层表面形貌的SEM像[61]
图6  热等静压(HIP)前后Ti-48Al合金微观结构的SEM像[73]
图7  采用冷喷涂和热轧工艺制备Mg/Al复合板材流程图[81]
图8  冷喷涂-搅拌摩擦加工复合增材制造(CFAM)样品不同位置横截面的宏观形貌和EBSD分析[91]
图9  连续搅拌摩擦(FSP)处理过程中渐进涂层沉积的示意图[11]
图10  电脉冲处理(EPT)前后冷喷涂Cu沉积层的SEM像[14]
[1] Grujicic M, Zhao C L, DeRosset W S, et al. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J]. Mater. Des., 2004, 25: 681
[2] Bae G, Xiong Y M, Kumar S, et al. General aspects of interface bonding in kinetic sprayed coatings [J]. Acta Mater., 2008, 56: 4858
[3] Judas J, Zapletal J, Adam O, et al. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray [J]. Mater. Charact., 2024, 216: 114259
[4] Judas J, Zapletal J, Řehořek L, et al. Effects of annealing temperature on microstructure and mechanical properties of cold sprayed AA7075 [J]. Procedia Struct. Integr., 2023, 43: 160
[5] Xie X L, Chen C Y, Chen Z, et al. Effect of annealing treatment on microstructure and mechanical properties of cold sprayed TiB2/AlSi10Mg composites [J]. Surf. Interfaces, 2021, 26: 101341
[6] Huang R Z, Sone M, Ma W H, et al. The effects of heat treatment on the mechanical properties of cold-sprayed coatings [J]. Surf. Coat. Technol., 2015, 261: 278
[7] Huang C J, Arseenko M, Zhao L, et al. Property prediction and crack growth behavior in cold sprayed Cu deposits [J]. Mater. Des., 2021, 206: 109826
[8] Yang K, Li W Y, Yang X W, et al. Effect of heat treatment on the inherent anisotropy of cold sprayed copper deposits [J]. Surf. Coat. Technol., 2018, 350: 519
[9] Winnicki M, Baszczuk A, Gibas A, et al. Experimental study on aluminium bronze coatings fabricated by low pressure cold spraying and subsequent heat treatment [J]. Surf. Coat. Technol., 2023, 456: 129260
[10] Zhang J, Kong D J. Effect of laser remelting on microstructure and immersion corrosion of cold-sprayed aluminum coating on S355 structural steel [J]. Opt. Laser Technol., 2018, 106: 348
[11] Perard T, Sova A, Robe H, et al. Friction stir processing of austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate: Feasibility study [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 2379
[12] Dong T S, Liu L, Li G L, et al. Effect of induction remelting on microstructure and wear resistance of plasma sprayed NiCrBSiNb coatings [J]. Surf. Coat. Technol., 2019, 364: 347
[13] Zhao Z P, Wang Y D, Wang J D, et al. The effects of heat treatment on the microstructure and mechanical properties of cold spraying additive manufacturing Ti [J]. J. Mater. Res. Technol., 2025, 36: 9283.
[14] Wu D, Xu Y X, Li W Y, et al. Fast strength-ductility synergistically adjusting of cold spray additive manufactured Cu deposits via electric pulse processing [J]. Chin. J. Aeronaut., 2024, 37: 558
[15] Peng Y H, Cui X Y, Xiong T Y, et al. Research status of cold spray technology in the field of materials preparation [J]. Mater. China, 2024, 43: 290
[15] 彭云辉, 崔新宇, 熊天英 等. 冷喷涂技术在材料制备领域的研究进展 [J]. 中国材料进展, 2024, 43: 290
[16] Yang L J, Li Z X, Huang C L, et al. Producing hard material coatings by laser-assisted cold spray: A technological review [J]. Mater. Rep., 2018, 32: 412
[16] 杨理京, 李争显, 黄春良 等. 激光辅助冷喷涂制备高硬度材料涂层的研究进展 [J]. 材料导报, 2018, 32: 412
[17] Li B, Hu Y F, Tian K, et al. An overview on cold spraying technology assisted with laser process [J]. Mater. China, 2024, 43: 115
[17] 李 波, 胡耀峰, 田 凯 等. 激光复合冷喷涂技术研究进展 [J]. 中国材料进展, 2024, 43: 115
[18] Ge W X, Li X B, Cheng X D, et al. Research progress of preparation and surface-treatment technology of metal-ceramic composite coatings [J]. Dev. Appl. Mater., 2011, 26(4): 95
[18] 葛文祥, 李相波, 程旭东 等. 金属陶瓷涂层制备技术及其后处理工艺研究进展 [J]. 材料开发与应用, 2011, 26(4): 95
[19] Li B, Wang H, Liu B, et al. Microstructure and properties of cold-sprayed metal coating optimized by heat-treatment: A review [J]. Heat Treat. Met., 2023, 48(10): 29
[19] 李 波, 王 豪, 刘 博 等. 热处理调控冷喷涂金属沉积层微观特性及性能研究进展 [J]. 金属热处理, 2023, 48(10): 29
[20] Guo W L, Xing Z G, Li P, et al. Research status of cold sprayed Cu-based composite coatings and post-process treatments [J]. Mater. Rep., 2024, 38(19): 192
[20] 郭伟玲, 邢志国, 李 鹏 等. 冷喷涂铜基复合涂层及后处理技术的研究现状 [J]. 材料导报, 2024, 38(19): 192
[21] Fu S R, Yang L J, Li Z X, et al. Research progress of Al-matrix composite coatings prepared by cold spraying technique [J]. Surf. Technol., 2020, 49(11): 75
[21] 付树仁, 杨理京, 李争显 等. 冷喷涂技术制备Al基复合材料涂层研究进展 [J]. 表面技术, 2020, 49(11): 75
[22] Huang Q, Qin J H, Yu M, et al. Cold spray deposition of non-metallic materials: research progress and perspectives [J]. Jiangxi Sci., 2020, 38: 7
[22] 黄 群, 秦加浩, 余 敏 等. 冷喷涂技术制备非金属材料涂层的研究进展 [J]. 江西科学, 2020, 38: 7
[23] Yang J W, Li W Y, Xing C H, et al. Research progress in cold spraying of copper coating [J]. Mater. Prot., 2022, 55(1): 58
[23] 杨景文, 李文亚, 邢词皓 等. 冷喷涂铜涂层研究进展 [J]. 材料保护, 2022, 55(1): 58
[24] Wang M Y, Li W Y, Xu Y X, et al. Research progress of cold sprayed cermet wear-resistant coating [J]. Surf. Technol., 2024, 53(10): 28
[24] 王明远, 李文亚, 徐雅欣 等. 冷喷涂硬质合金耐磨涂层研究进展 [J]. 表面技术, 2024, 53(10): 28
[25] Fan N S, Jin B Q, Zhang N N, et al. Research progress of cold spraying high-entropy alloys [J]. Mater. Prot., 2022, 55(1): 50
[25] 樊柠松, 金冰倩, 张楠楠 等. 冷喷涂制备高熵合金的研究进展 [J]. 材料保护, 2022, 55(1): 50
[26] Deng N, Dong H, Che H Y, et al. The research progress on preparation of metal coatings by cold spraying and its application in additive manufacturing [J]. Surf. Technol., 2020, 49(3): 57
[26] 邓 楠, 董 浩, 车洪艳 等. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展 [J]. 表面技术, 2020, 49(3): 57
[27] Zhou H X, Li C X, Li C J. Research progress of cold sprayed Ti and Ti alloy coatings [J]. China Surf. Eng, 2020, 33(2): 1
[27] 周红霞, 李成新, 李长久. 冷喷涂制备钛及钛合金涂层研究进展 [J]. 中国表面工程, 2020, 33(2): 1
[28] Li W Y, Zhang Z M, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: A review [J]. Acta Metall. Sin., 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
[28] 李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
[29] Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review [J]. Prog. Mater. Sci., 2020, 110: 100633
[30] Yu S Q, Yang X W, Wang F F, et al. Protection for cold sprayed coatings on magnesium alloy [J]. Surf. Technol., 2018, 47(5): 43
[30] 虞思琦, 杨夏炜, 王非凡 等. 镁合金表面冷喷涂层防护研究进展 [J]. 表面技术, 2018, 47(5): 43
[31] Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corr. Prot., 2021, 41: 22
doi: 10.11902/1005.4537.2020.138
[31] 郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
[32] Li T F, Wang K, Wu J, et al. Development on cold spray apparatus [J]. Therm. Spray Technol., 2011, 3(2): 15
[32] 李铁藩, 王 恺, 吴 杰 等. 冷喷涂装置研究进展 [J]. 热喷涂技术, 2011, 3(2): 15
[33] Xiong T Y, Wang J Q. Research progress of cold spray in Institute of Metal Research, Chinese Academy of Sciences [J]. Acta Metall. Sin., 2023, 59: 537
doi: 10.11900/0412.1961.2022.00552
[33] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展 [J]. 金属学报, 2023, 59: 537
doi: 10.11900/0412.1961.2022.00552
[34] Chen C Y, Xie Y C, Liu L T, et al. Cold spray additive manufacturing of invar 36 alloy: Microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72: 39
doi: 10.1016/j.jmst.2020.07.038
[35] Siddique S, Bernussi A A, Husain S W, et al. Enhancing structural integrity, corrosion resistance and wear properties of Mg alloy by heat treated cold sprayed Al coating [J]. Surf. Coat. Technol., 2020, 394: 125882
[36] Bhowmik A, Tan A W Y, Sun W, et al. On the heat-treatment induced evolution of residual stress and remarkable enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings [J]. Results Mater., 2020, 7: 100119
[37] Cao K, Yu M, Liang C M, et al. Study on thermal conductivity of cold sprayed Cu coating [J]. Surf. Eng., 2020, 36: 1058
[38] Seo D, Ogawa K, Sakaguchi K, et al. Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes [J]. Surf. Coat. Technol., 2012, 206: 2316
[39] Fan J L, Yun H T, Zhang X Q, et al. High-performance pure aluminum coatings on stainless steels by cold spray [J]. Coatings, 2023, 13: 738
[40] Nourian A, Beamer C, Muftu S. Effects of post-deposition processing on static and cyclic performance of cold sprayed 6061 aluminum alloy [J]. Addit. Manuf., 2024, 88: 104246
[41] Hutasoit N, Javed M A, Rashid R A R, et al. Effects of build orientation and heat treatment on microstructure, mechanical and corrosion properties of Al6061 aluminium parts built by cold spray additive manufacturing process [J]. Int. J. Mech. Sci., 2021, 204: 106526
[42] Ren Y Q, King P C, Yang Y S, et al. Characterization of heat treatment-induced pore structure changes in cold-sprayed titanium [J]. Mater. Charact., 2017, 132: 69
[43] Morks M F, Zahiri S H, Chen X B, et al. Influence of gas temperature and heat treatment on microstructure and properties of cold sprayed commercially pure titanium [J]. J. Mater. Eng. Perform., 2022, 31: 5549
[44] Yang L J, Wang S P, Luo X T, et al. Microstructural nano-scale evolution at inter-particles bonding interface of cold-sprayed Ti6Al4V deposits during heat treatment [J]. J. Therm. Spray Technol., 2023, 32: 2713
[45] Li W W, Xue N, Shao L, et al. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate [J]. Surf. Coat. Technol., 2024, 490: 131184
[46] Tirukandyur S, Kandadai V A S, Ellingsen M, et al. Effect of post-deposition heat treatment on microstructure and mechanical properties of NASA HR-1 cold spray coatings [J]. Surf. Coat. Technol., 2024, 482: 130704
[47] Sun W, Chu X, Huang J B, et al. Solution and double aging treatments of cold sprayed Inconel 718 coatings [J]. Coatings, 2022, 12: 347
[48] Brassart L H, Besson J, Delloro F, et al. Effect of various heat treatments on the microstructure of 316L austenitic stainless steel coatings obtained by cold spray [J]. J. Therm. Spray Technol., 2022, 31: 1725
[49] Meng X M, Zhang J B, Han W, et al. Influence of annealing treatment on the microstructure and mechanical performance of cold sprayed 304 stainless steel coating [J]. Appl. Surf. Sci., 2011, 258: 700
[50] Xue W, Jiang L T, Kang P C, et al. Design and fabrication of a nanoamorphous interface layer in B4C/Al composites to improve hot deformability and corrosion resistance [J]. ACS Appl. Nano Mater., 2020, 3: 5752
[51] Tariq N H, Gyansah L, Wang J Q, et al. Cold spray additive manufacturing: A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications [J]. Surf. Coat. Technol., 2018, 339: 224
[52] Wang J S, Shu L S. Effect of laser remelting path on residual stress and surface quality of remanufactured coatings [J]. Laser Optoelectron. Prog., 2023, 60: 0714010
[52] 王家胜, 舒林森. 激光重熔路径对再制造涂层残余应力及表面质量的影响 [J]. 激光与光电子学进展, 2023, 60: 0714010
[53] Kang N, Verdy C, Coddet P, et al. Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating [J]. Surf. Coat. Technol., 2017, 318: 355
[54] Astarita A, Genna S, Leone C, et al. Study of the laser remelting of a cold sprayed titanium layer [J]. Procedia CIRP, 2015, 33: 452
[55] Jin L, Xu F, Ma G J, et al. Effect of laser remelting technical parameters on properties of cold sprayed TC4 coatings [A]. International Thermal Spraying Seminar' 2017 (ITSS' 2017) and China National Thermal Spraying Conference' 2017 (CNTSC' 2017) [C]. Shenyang: Thermal Spraying Professional Committee of China Surface Engineering Association, 2017: 8
[55] 靳 磊, 许 飞, 马国佳 等. 激光重熔对冷喷涂TC4涂层性能影响研究 [A]. 第二十届国际热喷涂研讨会(ITSS’2017)暨第二十一届全国热喷涂年会(CNTSC’2017)论文集 [C]. 沈阳: 中国表面工程协会热喷涂专业委员会, 2017: 8
[56] Chen Z H, Sun X F, Li Z M, et al. Tribological behavior of cold sprayed Cu402F coating after laser remelting [J]. Surf. Technol., 2017, 46(10): 161
[56] 陈正涵, 孙晓峰, 李占明 等. 冷喷涂Cu402F涂层激光重熔表面改性后摩擦学行为 [J]. 表面技术, 2017, 46(10): 161
[57] Sova A, Grigoriev S, Okunkova A, et al. Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment [J]. Surf. Coat. Technol., 2013, 235: 283
[58] Feng L, Ma K, Wang G P, et al. Microstructure and properties of cold spray assisted laser remelting AlCox CrFeNiCu high entropy alloy coating [J]. Chin. J. Rare Met., 2024, 48: 1085
[58] 冯 力, 马 凯, 王贵平 等. 冷喷涂辅助激光重熔合成AlCox-CrFeNiCu高熵合金涂层组织与性能 [J]. 稀有金属, 2024, 48: 1085
[59] Luo X T, Xie T, Li C J, et al. Microstructure and properties tailoring of cold sprayed metals [J]. China Surf. Eng, 2020, 33(4): 68
[59] 雒晓涛, 谢 天, 李长久 等. 冷喷涂金属的组织与性能调控 [J]. 中国表面工程, 2020, 33(4): 68
[60] Li D T. Study on Microstructure and properties of low-pressure cold spray copper-based materials [D]. Lanzhou: Lanzhou University of Technology, 2020
[60] 李洞亭. 低压冷喷涂铜基材料组织性能的研究 [D]. 兰州: 兰州理工大学, 2020
[61] Sun W, Bhowmik A, Tan A W Y, et al. Improving microstructural and mechanical characteristics of cold-sprayed Inconel 718 deposits via local induction heat treatment [J]. J. Alloys Compd., 2019, 797: 1268
[62] Feng L, Wang G P, Ma K, et al. Microstructure and properties of AlCox CrFeNiCu high-entropy alloy coating synthesized by cold spraying assisted induction remelting [J]. Acta Metall. Sin., 2023, 59: 703
[62] 冯 力, 王贵平, 马 凯 等. 冷喷涂辅助感应重熔合成AlCox CrFeNiCu高熵合金涂层的显微组织和性能 [J]. 金属学报, 2023, 59: 703
[63] Yao Z L, Xiao G Q, Ma K, et al. Microstructure and properties of AlCrCoFex NiCu high-entropy alloy coating synthesized via cold spraying-assisted induction remelting method [J]. Trans. Indian Inst. Met., 2023, 76: 2063
[64] Liu J J, Ma K, Ding Y T, et al. Microstructure and properties of an FeCoCrAlCu HEA coating synthesized via the induction remelting method [J]. Coatings, 2023, 13: 399
[65] Petrovskiy P, Sova A, Doubenskaia M, et al. Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 819
[66] Sun Z W, Ma J Y, Chu X, et al. Preparation of dense TiAl intermetallics by cold spraying precursor-hot isostatic pressing [J]. Mater. Res. Appl., 2024, 18: 649
[66] 孙忠武, 马佳艳, 褚 欣 等. 冷喷涂前驱体-热等静压制备致密TiAl金属间化合物 [J]. 材料研究与应用, 2024, 18: 649
[67] Ajjarapu K P K, Barber C, Taylor J, et al. Advancements in 3D printing and hot isostatic pressing of copper: Bridging the gap between green and sintered states for enhanced mechanical and electrical properties [J]. Prog. Addit. Manuf., 2024, 9: 2343
[68] Petrovskiy P, Travyanov A, Cheverikin V V, et al. Effect of encapsulated hot isostatic pressing on properties of Ti6Al4V deposits produced by cold spray [J]. Int. J. Adv. Manuf. Technol., 2020, 107: 437
[69] Petrovskiy P, Khomutov M, Cheverikin V, et al. Influence of hot isostatic pressing on the properties of 316L stainless steel, Al-Mg-Sc-Zr alloy, titanium and Ti6Al4V cold spray deposits [J]. Surf. Coat. Technol., 2021, 405: 126736
[70] Singh P, Singh H, Singh S, et al. Development, characterization and high-temperature oxidation behaviour of hot-isostatic-treated cold-sprayed thick titanium deposits [J]. Machines, 2023, 11: 805
[71] Chen C Y, Xie Y C, Yan X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J]. Addit. Manuf., 2019, 27: 595
[72] Shen Y N, Ning X J, Yu X D, et al. The preparation of Ti-Ta impedance-graded coatings with limited diffusion by cold spraying combined with hot isostatic pressing [J]. Coatings, 2024, 14: 565
[73] Ma J Y, Chu X, Xie Y C, et al. Preparation of dense TiAl intermetallics by cold spraying the precursor-hot isostatic pressing [J]. Coatings, 2024, 14: 999
[74] Khomutov M, Chereshneva A, Petrovskiy P, et al. Microstructure of Al-Mg-Sc-Zr alloy cold spray deposits after heat treatment and hot isostatic pressing [J]. J. Alloys Compd., 2021, 858: 157644
[75] Khomutov M, Spasenko A, Sova A, et al. Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 847
[76] Qiu X, Tariq N U H, Qi L, et al. In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 780: 597
[77] Han C. Analysis on current situation of domestic copper strip development and innovation direction of hot rolling technology [J]. Nonferrous Met. Process., 2024, 53(1): 1
[77] 韩 晨. 国内铜板带发展现状与热轧技术的创新方向分析 [J]. 有色金属加工, 2024, 53(1): 1
[78] Wu W, Zhang L Y, Zheng Z D, et al. Effect of hot working on properties of cold sprayed aluminum alloy bulk [J]. Heat Treat. Met., 2023, 48(4): 123
doi: 10.13251/j.issn.0254-6051.2023.04.020
[78] 吴 畏, 张留艳, 郑之栋 等. 热加工对冷喷涂铝合金块材性能的影响 [J]. 金属热处理, 2023, 48(4): 123
[79] Li Z M, Yang X P, Zhang J B, et al. Interfacial mechanical behavior and electrochemical corrosion characteristics of cold-sprayed and hot-rolled titanium/stainless-steel couples [J]. Adv. Eng. Mater., 2016, 18: 1240
[80] Ye X Y, Yu M, Huang Q, et al. Evolution of microstructures and mechanical properties of cold sprayed copper in hot rolling [J]. J. Therm. Spray Technol., 2023, 32: 2701
[81] Ren Y P, Tariq N U H, Liu H H, et al. Unraveling the effects of hot rolling on microstructure and mechanical properties of cold sprayed Mg/Al clad plates [J]. Mater. Today Commun., 2022, 33: 104553
[82] Zhao Z P, Tang J R, Tariq N U H, et al. Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling [J]. Mater. Sci. Eng., 2020, A795: 139982
[83] Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng., 2020, A775: 138968
[84] Zhao Z P, Tariq N U H, Tang J R, et al. Microstructural evolutions and mechanical characteristics of Ti/steel clad plates fabricated through cold spray additive manufacturing followed by hot-rolling and annealing [J]. Mater. Des., 2020, 185: 108249
[85] Qiu X, Qi L, Tang J R, et al. A viable approach to repair neutron shielding B4C/6061 Al composite sheets through cold spray and hot rolling co-treatment [J]. J. Mater. Sci. Technol., 2022, 106: 173
[86] Ji G, Dong X Y, Qiu L S, et al. Influence of friction stir spot processing on grain structure evolution and nanomechanical behavior of cold-sprayed Al coating on Ti substrate [J]. J. Therm. Spray Technol., 2024, 33: 1827
[87] Prangnell P B, Heason C P. Grain structure formation during friction stir welding observed by the ‘stop action technique’ [J]. Acta Mater., 2005, 53: 3179
[88] Ji G, Liu H, Yang G J, et al. Formation of intermetallic compounds in a cold-sprayed aluminum coating on magnesium alloy substrate after friction stir-spot-processing [J]. J. Therm. Spray Technol., 2021, 30: 1464
[89] Wang W, Han P, Wang Y H, et al. High-performance bulk pure Al prepared through cold spray-friction stir processing composite additive manufacturing [J]. J. Mater. Res. Technol., 2020, 9: 9073
doi: 10.1016/j.jmrt.2020.06.034
[90] Sova A, Goriainova I, Feulvarch E, et al. Comparison between friction stir processing and laser remelting processes of cold sprayed metallic composite coatings [J]. Mater. Lett., 2023, 349: 134898
[91] Xiang Y T, Liu Z H, Wang W, et al. High cycle fatigue behavior of bulk 6061Al prepared by cold spray-friction stir processing composite additive manufacturing [J]. Eng. Fract. Mech., 2024, 306: 110255
[92] Jibran W, Wanjara P, Gholipour Baradari J, et al. Localised surface modification of high-strength aluminium-alumina metal matrix composite coatings using cold spraying and friction stir processing [J]. Adv. Appl. Ceram., 2023, 122: 181
[93] Huang C J, Li W Y, Zhang Z H, et al. Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing [J]. Surf. Coat. Technol., 2016, 296: 69
[94] Ye D M, Han P, Wang W, et al. Research on cold spray-friction stir processing composite additive manufacturing of CoCrFeNi/6061Al composites and influence law of reinforcement phase [J]. J. Plast. Eng., 2024, 31(3): 206
[94] 叶东明, 韩 鹏, 王 文 等. CoCrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究 [J]. 塑性工程学报, 2024, 31(3): 206
[95] Khodabakhshi F, Marzbanrad B, Yazdanmehr A, et al. Tailoring the residual stress during two-step cold gas spraying and friction-stir surface integration of titanium coating [J]. Surf. Coat. Technol., 2019, 380: 125008
[96] Li W Y, Wu D, Hu K W, et al. A comparative study on the employment of heat treatment, electric pulse processing and friction stir processing to enhance mechanical properties of cold-spray-additive-manufactured copper [J]. Surf. Coat. Technol., 2021, 409: 126887
[97] Huang C J, Li W Y, Feng Y, et al. Microstructural evolution and mechanical properties enhancement of a cold-sprayed Cu-Zn alloy coating with friction stir processing [J]. Mater. Charact., 2017, 125: 76
[98] Huang C J, Yan X C, Li W Y, et al. Post-spray modification of cold-sprayed Ni-Ti coatings by high-temperature vacuum annealing and friction stir processing [J]. Appl. Surf. Sci., 2018, 451: 56
[99] Xu Y X, Ge J J, Ji B J, et al. Mechanical alloying of cold-sprayed Ni-Nb-Si composite coating by friction stir processing: Improvement in microstructure and resistance against molten silicates corrosion [J]. Surf. Coat. Technol., 2022, 451: 129051
[100] Wang X, Zhang D L, Darsell J T, et al. Manufacturing oxide dispersion strengthened (ODS) steel plate via cold spray and friction stir processing [J]. J. Nucl. Mater., 2024, 596: 155076
[101] Babutskyi A, Mohin M, Chrysanthou A, et al. Effect of electropulsing on the fatigue resistance of aluminium alloy 2014-T6 [J]. Mater. Sci. Eng., 2020, A772: 138679
[1] 尤世泉, 崔功军, 杨荣乾, 刘宇嵩, 冯小刚, 寇子明. 激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能[J]. 金属学报, 2025, 61(9): 1403-1412.
[2] 毕健浩男, 张艳, 王振玉, 周晟昊, 刘永跃, 张小岩, 汪爱英. Mo含量对CrAlMoN涂层微观结构、力学性能及摩擦学性能的影响[J]. 金属学报, 2025, 61(9): 1413-1424.
[3] 谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
[4] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[5] 李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
[6] 臧勃林, 杨延格, 曹京宜, 徐锋锋, 姚海华, 周正. 双非晶相铁基复合涂层的腐蚀与磨损行为[J]. 金属学报, 2025, 61(8): 1267-1275.
[7] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[8] 何家宝, 王亮, 张朝威, 邹明科, 孟杰, 王新广, 姜肃猛, 周亦胄, 孙晓峰. Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响[J]. 金属学报, 2025, 61(7): 1093-1108.
[9] 周任远, 朱丽慧. Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响[J]. 金属学报, 2025, 61(5): 744-756.
[10] 周小卫, 郭云, 荆雪艳, 王宇鑫. 仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能[J]. 金属学报, 2025, 61(5): 783-796.
[11] 杨康, 辛越, 姜自滔, 刘侠, 薛召露, 张世宏. 纳米ZrB2 增强CoNiCrAlY复合粉末的机械合金化制备及其涂层的组织与性能[J]. 金属学报, 2025, 61(4): 619-631.
[12] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[13] 韩启飞, 狄兴隆, 郭跃岭, 叶水俊, 郑元翾, 刘长猛. 电弧熔丝增材制造Mg/Mg双金属的组织与力学性能[J]. 金属学报, 2025, 61(2): 211-225.
[14] 吴文伟, 向超, 张涛, 邹志航, 孙勇飞, 刘金鹏, 张涛, 韩恩厚. 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响[J]. 金属学报, 2025, 61(10): 1515-1530.
[15] 秦凤明, 李亚菲, 李亚杰, 赵晓东, 梁上上, 陈金秋. 热处理对电弧定向能量沉积Al-Zn-Mg-Cu-Sc合金显微组织与力学性能的影响[J]. 金属学报, 2025, 61(10): 1542-1554.