Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 717-730    DOI: 10.11900/0412.1961.2023.00295
  研究论文 本期目录 | 过刊浏览 |
TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理
赵焯雅, 孟令健, 林鹏(), 曹晓卿()
太原理工大学 材料科学与工程学院 太原 030024
Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy
ZHAO Zhuoya, MENG Lingjian, LIN Peng(), CAO Xiaoqing()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

赵焯雅, 孟令健, 林鹏, 曹晓卿. TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理[J]. 金属学报, 2025, 61(5): 717-730.
Zhuoya ZHAO, Lingjian MENG, Peng LIN, Xiaoqing CAO. Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy[J]. Acta Metall Sin, 2025, 61(5): 717-730.

全文: PDF(5031 KB)   HTML
摘要: 

为探究TC4钛合金在不同热压缩变形条件下的微观组织演变及织构形成机理,进而达到调控织构和弱化“宏区”的目的,本工作通过热压缩实验、OM、EBSD及高温β相组织重构技术研究了TC4钛合金在α + β相区、β相区以及跨相区连续热压缩后α相微观组织及织构的演变规律。结果表明,试样在α + β相区压缩后主要由等轴α相组成,变形时{101¯0}<112¯0>柱面滑移系开动导致α相首先转动至{112¯0}//FD取向(FD为压缩方向);随形变量和形变速率增加,α晶粒逐渐转动至{101¯0}//FD取向。在β相区保温或压缩后的冷却过程中主要形成具有{101¯0}//FD相变织构的片层α相;在β相区施加30%的变形后β晶粒转动至001//FD取向,β001//FD织构的增强促进了冷却过程中α相{101¯0}//FD相变织构的形成;随β相区形变量和形变速率增加,动态再结晶被促进,β晶粒尺寸减小,相变生成的片层α相晶粒尺寸也明显减小,且晶粒取向分散,因此α相{101¯0}//FD织构强度也相应降低。在跨相区连续热压缩后主要形成{101¯0}//FD织构,柱面滑移对织构的形成起主要作用。当试样以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%时,相变析出的α晶粒首先转动至{112¯0}//FD取向,因此抑制了{101¯0}//FD织构的形成;而随着α + β相区形变量增加,晶粒取向进一步转向{101¯0}//FD取向,因此{101¯0}//FD织构强度增加;对于在β相区保温(未变形)后降温至α + β相区以0.01 s-1的形变速率压缩60%的试样,其α相动态析出过程中的变体选择较弱,且α + β相区较大的形变量在一定程度上促进了α相的动态再结晶,因此其具有最弱的α相{101¯0}//FD织构;当形变速率为0.05 s-1时,较大的形变量会导致α相发生动态再结晶,同样达到弱化{101¯0}//FD织构的效果。因此,采用跨相区连续热压缩工艺可以获得弱织构片层组织的钛合金。随后对试样在室温(约20 ℃)下进行了力学性能测试,在1020 ℃、5 min (未变形) + 920 ℃、60%、0.01 s-1条件下变形的试样整体织构最弱,且α相晶粒尺寸较小,抵抗裂纹萌生和扩展的能力较强,因此具有最高的延伸率。

关键词 TC4钛合金跨相区连续热压缩织构演变柱面滑移系    
Abstract

Titanium alloy has emerged as the preferred structural material in the aerospace and marine industries because of its exceptional strength-to-weight ratio, corrosion resistance, and fatigue resistance. The primary application of titanium alloy in aerospace is evident in aeroengines, emphasizing the importance of developing lightweight, high-performance components to enhance engine reliability. Despite these advantages, challenges arise during hot processing because the alloy forms a strong texture, resulting in anisotropic mechanical properties. In addition, the formation of “macrozones”, areas with similar grain orientations during hot processing, further complicates matters by facilitating stress concentration during hot deformation, thereby increasing the likelihood of crack nucleation. Rapid crack propagation within “macrozones” reduces the service life of titanium alloy components, necessitating a thorough investigation of the formation mechanism and control methods for “macrozones”. This study delves into the microstructure evolution and texture formation of TC4 titanium alloy under various hot compression conditions, aiming to elucidate the role of weakening texture and “macrozone”. The microstructure and texture evolution of the α phase after α + β phase field, β phase field, and continuous through-transus thermal compression were examined in TC4 alloy through thermal compression tests, optical microscopy, electron backscatter diffraction, and reconstruction of the high-temperature β phase. The results indicate that specimens primarily comprised equiaxed α phase after compression in the α + β phase field. The activation of {101¯0}<112¯0> prismatic slip systems caused α phase rotation toward {112¯0}//forging direction (FD) orientation during deformation. With increased deformation and strain rate, α grains gradually rotated to {101¯0}//FD orientation. Cooling after holding or compression in the β phase field resulted in the development of lamellar α phase with a {101¯0}//FD texture. In the β phase field, 30% compression induced β grain rotation to 001//FD orientation, enhancing β phase001//FD texture and promoting the formation of α phase{101¯0}//FD transformation texture during cooling. Increased deformation and strain rate facilitated dynamic recrystallization of the β phase, reducing β grain size, weakening α phase {101¯0}//FD texture, and refining α grain size. After continuous through-transus thermal compression, the dominant {101¯0}//FD texture formation occurred because of prismatic slip system activation. Under specific conditions, such as 30% compression in the β phase field and 30% compression in the α + β phase field at 0.01 s-1, inhibition of {101¯0}//FD texture formation was observed as α grains rotated to {112¯0}//FD orientation during dynamic precipitation. Increased deformation in the α + β phase field led to further rotation of α grains to {101¯0}//FD orientation, intensifying {101¯0}//FD texture. Conversely, holding in the β phase field (undeformed), then cooled to the α + β phase field and compressed at 0.01-1 to a 60% reduction resulted in weak variant selection during dynamic precipitation of α phase, with large deformation promoting dynamic recrystallization of α phase and yielding the weakest α phase {101¯0}//FD texture. And at a strain rate of 0.05 s-1, extensive deformation promoting dynamic recrystallization of α phase, and weakening {101¯0}//FD texture. Continuous through-transus thermal compression was identified as a method for obtaining lamellar-structured titanium alloys with weak texture. Subsequent mechanical property testing at room temperature (around 20 oC) revealed that the through-transus thermal compressed specimen at 1020 oC, 5 min (undeformed) + 920 oC, 60%, and 0.01 s-1 exhibited the weakest {101¯0}//FD texture intensity and the smallest grain size of α phase. This specimen demonstrated strong crack initiation and propagation resistance, resulting in the highest elongation.

Key wordsTC4 titanium alloy    continuous through-transus thermal compression    texture evolution    prismatic slip system
收稿日期: 2023-07-07     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(52305403)
通讯作者: 曹晓卿,caoxiaoqing@tyut.edu.cn,主要从事轻合金塑性加工研究;
林 鹏,linpeng@tyut.edu.cn,主要从事金属高性能特种塑性成型研究
Corresponding author: CAO Xiaoqing, professor, Tel: 18634300096, E-mail: caoxiaoqing@tyut.edu.cn;
LIN Peng, professor, Tel: (0351)6010021, E-mail: linpeng@tyut.edu.cn
作者简介: 赵焯雅,女,1998年生,硕士
Sample No.ProcessDeformation parameter
1α + β phase field compression920 oC, 30%, 0.01 s-1
2920 oC, 30%, 0.05 s-1
3920 oC, 60%, 0.01 s-1
4920 oC, 60%, 0.05 s-1
5β phase field holding or compression1020 oC, 5 min (undeformed)
61020 oC, 30%, 0.01 s-1
71020 oC, 60%, 0.01 s-1
81020 oC, 30%, 0.05 s-1
9Continuous through-transus compression1020 oC, 30%, 0.01 s-1 + 920 oC, 30%, 0.01 s-1
101020 oC, 30%, 0.05 s-1 + 920 oC, 30%, 0.05 s-1
111020 oC, 30%, 0.01 s-1 + 920 oC, 60%, 0.01 s-1
121020 oC, 30%, 0.05 s-1 + 920 oC, 60%, 0.05 s-1
131020 oC, 5 min (undeformed) + 920 oC, 60%, 0.01 s-1
表1  TC4钛合金在不同相区内的变形参数
图1  TC4钛合金热压缩加工路线示意图
图2  TC4钛合金试样和室温拉伸试样示意图
图3  原始TC4钛合金的OM像,α相的EBSD取向图、极图和反极图
图4  TC4钛合金在α + β相区压缩后α相的EBSD取向图、极图和反极图
图5  TC4钛合金在α + β相区压缩后α相的{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的Schmid因子(SF)分布图
图6  TC4钛合金在β相区保温或压缩后α相的EBSD取向图、极图和反极图
图7  TC4钛合金在β相区保温或压缩后β相的EBSD取向图
图8  图6中方框位置I和II的α“宏区”EBSD取向图、{0001}极图和相邻β晶粒的{110}极图
图9  TC4钛合金跨相区连续热压缩后α相的EBSD取向图、极图和反极图
图10  TC4钛合金跨相区连续热压缩后α相{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的SF分布图
Sample No.Tensile strength / MPaElongation / %
7933.414.9
9938.813.6
13926.616.0
表2  TC4钛合金在不同热压缩工艺下以0.01 s-1形变速率总压缩60%后的室温拉伸性能
图11  图6中方框位置I和II中不同取向β晶粒的重构取向图和{001}极图、相应区域内α晶粒取向图、{0001}极图和反极图
图12  图9区域I和II中不同取向β晶粒的重构取向图和001极图、相应区域α晶粒取向图、反极图和{101¯0}<112¯0>柱面滑移系的SF图
1 Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136
2 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
3 Zhao Y Q, Ge P, Xin S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Mater. China, 2020, 39: 527
3 赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39: 527
4 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A Review [J]. J. Mater. Sci. Technol., 2020, 39: 56
doi: 10.1016/j.jmst.2019.07.052
5 Gao X X, Zeng W D, Ma H Y, et al. The origin of coarse macrograin during thermo-mechanical processing in a high temperature titanium alloy [J]. J. Alloys Compd., 2019, 775: 589
6 Deng Y T, Li S Q, Huang X. Anisotropy of mechanical properties of β processed TC17 titanium Alloy [J]. Chin. J. Rare Met., 2018, 42: 885
6 邓雨亭, 李四清, 黄 旭. β锻TC17钛合金力学性能各向异性研究 [J]. 稀有金属, 2018, 42: 885
7 Bantounas I, Dye D, Lindley T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V [J]. Acta Mater., 2009, 57: 3584
8 Suárez Fernández D, Wynne B P, Crawforth P, et al. The effect of forging texture and machining parameters on the fatigue performance of titanium alloy disc components [J]. Int. J. Fatigue, 2021, 142: 105949
9 Li D K, Guo Y, Yang L X, et al. Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region [J]. Foundry Technol., 2022, 43: 114
9 李东宽, 郭 岩, 杨立新 等. TC4钛合金两相区的热变形行为及微观组织 [J]. 铸造技术, 2022, 43: 114
10 Zheng G M, Mao X N, Tang B, et al. Evolution of microstructure and texture of a near α titanium alloy during forging bar into disk [J]. J. Alloys Compd., 2020, 831: 154750
11 Li C M, Li P, Zhao M, et al. Microstructures and textures of TA15 titanium alloy after hot deformation [J]. Chin. J. Nonferrous Met., 2014, 24: 91
11 李成铭, 李 萍, 赵 蒙 等. TA15钛合金的热变形微观组织与织构 [J]. 中国有色金属学报, 2014, 24: 91
12 Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V [J]. Acta Mater., 2004, 52: 5215
13 Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
14 Shi R, Dixit V, Viswanathan G B, et al. Experimental assessment of variant selection rules for grain boundary α in titanium alloys [J]. Acta Mater., 2016, 102: 197
15 Leo Prakash D G, Honniball P, Rugg D, et al. The effect of β phase on microstructure and texture evolution during thermomechanical processing of α + β Ti alloy [J]. Acta Mater., 2013, 61: 3200
16 Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β 110 texture intensity on α-variant selection and microstructure morphology during β/α phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
17 Obasi G C, Birosca S, Quinta da Fonseca J, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
18 Meng L, Kitashima T, Tsuchiyama T, et al. β-texture evolution during α precipitation in the two-step forging process of a near-β titanium alloy [J]. Metall. Mater. Trans., 2020, 51A: 5912
19 Bachmann F, Hielscher R, Schaeben H. Texture analysis with MTEX—Free and open source software toolbox [J]. Solid State Phenom., 2010, 160: 63
20 Lü X C, Zhao W G, Yuan M R, et al. Hot deformation behavior and microstructure evolution of TC11 titanium alloy [J]. Heat Treat Met., 2023, 48: 279
doi: 10.13251/j.issn.0254-6051.2023.05.044
20 吕学春, 赵文革, 袁明荣 等. TC11钛合金热变形行为及微观组织演变 [J]. 金属热处理, 2023, 48: 279
doi: 10.13251/j.issn.0254-6051.2023.05.044
21 Chen Z H, Xia W J, Cheng Y Q, et al. Texture and anisotropy in magnesium alloys [J]. Chin. J. Nonferrous Met., 2005, 15: 1
21 陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1
22 Salem A A, Semiatin S L. Anisotropy of the hot plastic deformation of Ti-6Al-4V single-colony samples [J]. Mater. Sci. Eng., 2009, A508: 114
23 Zhang Z, Wang Q J, Mo W. Titanium Metallurgy and Heat Treatment [M]. Beijing: Metallurgical Industry Press, 2009: 7
23 张 翥, 王群骄, 莫 畏. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009: 7
24 Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, et al. Microstructural formation in Ti Alloys: In-situ characterization of phase transformation kinetics [J]. JOM, 2007, 59(1): 54
25 Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field [J]. Chin. J. Rare Met., 2015, 39: 967
25 姚彭彭, 李 萍, 李成铭 等. TA15钛合金β热变形行为及显微组织 [J]. 稀有金属, 2015, 39: 967
26 Li N, Zhao Z B, Zhu S X, et al. Analysis of the active slip mode during compression of the near-α titanium alloy in the α + β phase-field: Insights from the results of electron backscattered diffraction [J]. Mater. Lett., 2021, 288: 129363
27 Lunt D, Thomas R, Atkinson M D, et al. Understanding the role of local texture variation on slip activity in a two-phase titanium alloy [J]. Acta Mater., 2021, 216: 117111
28 Le Corre S, Forestier R, Brisset F, et al. Influence of β-forging on texture development in Ti 6246 alloy [A]. Proceedings of the 13th World Conference on Titanium [M]. San Diego: John Wiley & Sons, Inc., 2016: 757
29 Zhang D, Dong X J, Xu Y, et al. Dynamic recrystallization mechanism of Ti-6554 alloy during high-temperature deformation [J]. J. Alloys Compd., 2023, 959: 170534
30 Whittaker M T, Evans W J, Lancaster R, et al. The effect of microstructure and texture on mechanical properties of Ti6-4 [J]. Int. J. Fatigue, 2009, 31: 2022
31 Lütjering G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
[1] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[2] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[5] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[6] 林英华, 雷永平, 符寒光, 林健. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响[J]. 金属学报, 2014, 50(12): 1520-1528.
[7] 林英华, 雷永平, 符寒光, 林健. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50(12): 1513-1519.
[8] 王沿东;刘沿东;徐家桢;梁志德. 多晶沉积薄膜生长过程中织构演变的模拟研究[J]. 金属学报, 1998, 34(3): 313-318.