Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1607-1614    DOI: 10.11900/0412.1961.2022.00472
  研究论文 本期目录 | 过刊浏览 |
减少钛合金表面氧化的阴极电保护激光加工的研究
梁良1,2, 姜治康1,2, 谭欢恒1,2, 陈健3, 姜长城1(), 易根苗2,4, 林新贵4
1 华南理工大学 机械与汽车工程学院 广州 510640
2 华南理工大学 国家金属材料近净成型工程技术研究中心 广州 510640
3 广东万事泰集团有限公司 云浮 527300
4 广州番禺职业技术学院 智能制造学院 广州 511483
Study on Cathodic Protection Assisted Laser Processing (CPALP) for Reducing Titanium Alloy Surface Oxidation
LIANG Liang1,2, JIANG Zhikang1,2, TAN Huanheng1,2, CHEN Jian3, JIANG Changcheng1(), YI Genmiao2,4, LIN Xingui4
1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
2 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
3 Guangdong Master Group Co. Ltd., Yunfu 527300, China
4 School of Intelligent Manufacturing, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
引用本文:

梁良, 姜治康, 谭欢恒, 陈健, 姜长城, 易根苗, 林新贵. 减少钛合金表面氧化的阴极电保护激光加工的研究[J]. 金属学报, 2024, 60(12): 1607-1614.
Liang LIANG, Zhikang JIANG, Huanheng TAN, Jian CHEN, Changcheng JIANG, Genmiao YI, Xingui LIN. Study on Cathodic Protection Assisted Laser Processing (CPALP) for Reducing Titanium Alloy Surface Oxidation[J]. Acta Metall Sin, 2024, 60(12): 1607-1614.

全文: PDF(1853 KB)   HTML
摘要: 

针对Ti及钛合金在激光加工过程中极易发生表面氧化的问题,提出了一种基于惰性电解液的阴极电保护激光加工工艺。利用SEM和EDS表征了该工艺中不同工作电流和电解液下加工区域的微观形貌和O含量。结果表明,利用电流竞争和提高电解液惰性的2个思路,可以降低激光加工区域的O含量。在工作电流为600 mA、电解液是0.2 mol/L KNaC₄H₄O₆ (酒石酸钾钠)的40%EtOH溶液时,加工区域极少产生裂纹、气孔等缺陷,且含O量降至4.9%。利用电压表和参比电极测量了装置的工作回路伏安特性曲线和阴极极化曲线,以明确本工艺的电力要求和样品的极化状况。结果表明,工作电流在150~900 mA的区间里,工作回路伏安特性曲线和阴极极化曲线都呈明显的线性关系。分析2条曲线,佐证了电解液惰性与O含量的关系:提高电解液惰性可以减少加工区域H2O的供给,从而以减少反应物的方式阻止H2O氧化Ti的反应正向移动,降低O含量。

关键词 钛合金氧化水下激光加工阴极电保护惰性电解液电极极化    
Abstract

Titanium and its alloys are highly susceptible to surface oxidation during laser processing. To address this issue, a cathodic electric protection laser processing technique based on an inert electrolyte is proposed. Further, to investigate the effectiveness of this technique, the microscopic morphology and the O content of laser processed area were characterized using SEM and EDS under different operating currents and electrolytes. The results prove that the O content of the laser processed area can be reduced by applying the following two approaches: current competition and the enhancement of the electrolyte's inertness. For an electrolyte obtained by dissolving 0.2 mol/L KNaC4H4O6 (potassium sodium tartrate) in 40%EtOH and at an operating current of 600 mA, the processed area exhibited minimal defects, such as cracks and porosity, and the O content was reduced to 4.9%. A voltmeter and a reference electrode were used to determine the working circuit volt-ampere characteristic curve and the cathodic polarization curve. The results revealed that the curves exhibit an evident linear relationship within the operating current range of 150~900 mA. Further analysis supports the relationship between the electrolyte inertness and the O content: enhancing the electrolyte's inertness reduces the supply of H2O in the processing area, thereby preventing the reaction between H2O and Ti through the method of reducing reactants. Consequently, the O content is reduced.

Key wordstitanium alloy    oxidation    underwater laser processing    cathodic protection    inert electrolyte    electrode polarization
收稿日期: 2022-09-23     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51575193);广东省基础与应用基础研究基金自然科学基金面上项目(2021A1515010879);云浮市2021年省科技创新战略专项资金项目(2021090201);广州市基础与应用基础研究项目(202201011848);广州番禺职业技术学院科技一般项目(2021KJ12)
通讯作者: 姜长城,jiangcc@scut.edu.cn,主要从事新型加工制造技术的实验研究及教学
Corresponding author: JIANG Changcheng, Tel: (020)87110032, E-mail: jiangcc@scut.edu.cn
作者简介: 梁 良,男,1983年生,副教授,博士
图1  用于激光加工和电极电势测试的电化学装置
图2  逐行扫描策略示意
图3  不同的工作电流和电解液中加工区域的表面微观形貌
图4  不同电解液和工作电流下加工区域的O含量
图5  2种溶剂里的分子排列示意图
图6  不同电解液(A、B、C)下的工作回路伏安特性曲线和阴极极化曲线
图7  电解池工作电压的分压示意
图8  平顺段内装置的等效电路
图9  工作回路电阻的组成
图10  3种电解液内的粒子排布示意图
1 Ahmed N, Darwish S, Alahmari A M. Experimental investigation of dimensional variation in laser-machined micro-channels produced in titanium alloy [J]. J. Laser Micro/Nanoeng., 2016, 11: 210
2 Alahmari A M, Darwish S, Ahmed N. Laser beam micro-milling (LBMM) of selected aerospace alloys [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 2411
3 Deng T R, Zhu Z L, Ma T, et al. Experimental study in electrochemical etchant using titanium alloy for printed circuit heat exchanger channels [J]. J. Eng. Thermophys., 2020, 41: 976
3 邓天瑞, 朱子良, 马 挺 等. 基于钛合金的印刷电路板换热器通道电解蚀刻实验研究 [J]. 工程热物理学报, 2020, 41: 976
4 Singh N, Hameed P, Ummethala R, et al. Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters, application trends, and future prospects [J]. Mater. Today Adv., 2020, 8: 100097
5 Lavisse L, Langlade C, Berger P, et al. A thermo-kinetic study of titanium oxidation assisted by a Nd-YAG pulsed laser [J]. Mater. Sci. Forum, 2004, 461-464: 697
6 Sahu A K, Jha S. Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling [J]. Mater. Manuf. Processes, 2020, 35: 279
7 Xiong Y M, Zhu S L, Wang F H. The oxidation behavior and mechanical performance of Ti60 alloy with enamel coating [J]. Surf. Coat. Technol., 2005, 190: 195
8 Huang S X, Zhao Q Y, Lin C, et al. Effects of oxygen content on Charpy impact properties and crack resistance of α titanium alloys [J]. Mater. Sci. Eng., 2021, 818A: 141394
9 Qiao Y L, Liu H J, Xu Q, et al. Removal of oxide skin on surface of TC4 titanium alloy [J]. J. Shenyang Univ. Technol., 2014, 36: 165
9 乔永莲, 刘会军, 许 茜 等. TC4钛合金表面氧化皮去除 [J]. 沈阳工业大学学报, 2014, 36: 165
doi: 10.7688/j.issn.1000-1646.2014.02.09
10 Wang L H, Wang L Q, Luo C P, et al. Effect of laser cleaning titanium alloy surface scale on matrix properties [J]. Hot Work. Technol., 2013, 52(18): 75
10 王利华, 王力强, 罗长鹏 等. 激光清洗钛合金表面氧化皮对基体性能的影响 [J]. 热加工工艺, 2013, 52(18): 75
11 Li K M, Liu Y J, Liu X C, et al. Simultaneous strength-ductility enhancement in as-cast Ti6Al4V alloy by trace Ce [J]. Mater. Des., 2022, 215: 110491
12 Bolletta F, Prodi L, Zaccheroni N. Oscillating photoluminescence in the cerium ion catalyzed Belousov-Zhabotinsky reaction [J]. Chem. Phys. Lett., 1995, 237: 346
13 Xie P, Xue C, Du D D, et al. Photo-induced oxidative cleavage of C-C double bonds for the synthesis of biaryl methanone via CeCl3 catalysis [J]. Org. Biomol. Chem., 2021, 19: 6781
14 Iwatani N, Doan H D, Fushinobu K. Optimization of near-infrared laser drilling of silicon carbide under water [J]. Int. J. Heat Mass Transfer, 2014, 71: 515
15 Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, et al. Laser ablation of titanium alloy under a thin and flowing water layer [J]. Int. J. Mach. Tools Manuf., 2015, 89: 14
16 Wuttisarn T, Tangwarodomnukun V, Dumkum C. Laser micromachining of titanium alloy in water and ice at different temperatures [J]. Opt. Laser Technol., 2020, 125: 106024
17 Zhu S, Lu Y F, Hong M H, et al. Laser ablation of solid substrates in water and ambient air [J]. J. Appl. Phys., 2001, 89: 2400
18 Kaakkunen J J J, Silvennoinen M, Paivasaari K, et al. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes [J]. Phys. Procedia, 2011, 12B: 89
19 Sarrazin P, Motte F, Besson J, et al. Oxidation mechanism of titanium and of alloy TA6V4 by water vapor [J]. J. Less-Common. Met., 1978, 59: 111
20 Wouters Y, Galerie A, Petit J P. Thermal oxidation of titanium by water vapour [J]. Solid State Ionics, 1997, 104: 89
21 Luo M L L, Wei P Y, Li Q H, et al. Underwater laser welding of pure Ti: Oxidation and hardening behaviors [J]. Metals, 2021, 11: 610
22 Kim Y S, Kim J, Choi D, et al. Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method [J]. Eng. Anal. Boundary Elem., 2017, 77: 36
23 Camarda P, Messina F, Vaccaro L, et al. Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution [J]. J. Appl. Phys., 2016, 120: 124312
24 Sreekumar N V, Bhat N G, Narayana B, et al. Selective complexometric determination of titanium(IV) using sodium potassium tartrate or ascorbic acid as masking agent [J]. Microchim. Acta, 2003, 141: 29
25 Hu Q, Lei X P, Fan H H, et al. Influence of dispersant on rheological properties of dewatered sludge [J]. Environ. Sci. Technol., 2010, 33(7): 61
25 呼 庆, 雷西萍, 范海宏 等. 分散剂对脱水污泥流动性能的影响 [J]. 环境科学与技术, 2010, 33(7): 61
26 Li D. Principles of Electrochemistry [M]. 3rd Ed., Beijing: Beihang University Press, 2008: 143
26 李 荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 143
[1] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[2] 吕云蕾, 任延杰, 冯抗抗, 周梦妮, 王文, 陈荐, 牛焱. 四元Co-Ni-Cr-Al合金高温氧化模式及其转变机理[J]. 金属学报, 2024, 60(7): 947-956.
[3] 许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
[4] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[5] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[6] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
[7] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[8] 程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
[9] 刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
[10] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[11] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[12] 彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. AlCr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.
[13] 王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
[14] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[15] 张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.