|
|
Fe-Cr合金气泡演化动力学的相场法模拟 |
刘彩艳1, 冯泽华1, 张云鹏1, 余康2, 吴璐3, 马聪3, 张静2( ) |
1.西安理工大学 材料科学与工程学院 西安 710048 2.西北工业大学 凝固技术国家重点实验室 西安 710072 3.中国核动力研究设计院 成都 610005 |
|
Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys |
LIU Caiyan1, FENG Zehua1, ZHANG Yunpeng1, YU Kang2, WU Lu3, MA Cong3, ZHANG Jing2( ) |
1.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 3.Nuclear Power Institute of China, Chengdu 610005, China |
引用本文:
刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
Caiyan LIU,
Zehua FENG,
Yunpeng ZHANG,
Kang YU,
Lu WU,
Cong MA,
Jing ZHANG.
Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys[J]. Acta Metall Sin, 2024, 60(9): 1279-1288.
1 |
Martin G, Garcia P, Sabathier C, et al. Irradiation-induced heterogeneous nucleation in uranium dioxide [J]. Phys. Lett., 2010, 374A: 3038
|
2 |
Gao J, Gaganidze E, Kaiser B, et al. Evolution mechanisms of irradiation-induced helium bubbles, C15 clusters and dislocation loops in ferrite/martensite steels: A cluster dynamics modeling study [J]. J. Nucl. Mater., 2021, 557: 153212
|
3 |
Garcia P, Martin G, Sabathier C, et al. Nucleation and growth of intragranular defect and insoluble atom clusters in nuclear oxide fuels [J]. Nucl. Instrum. Methods Phys. Res., 2012, 277B: 98
|
4 |
Liang L Y, Mei Z G, Soo Kim Y, et al. Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel [J]. Comput. Mater. Sci., 2018, 145: 86
|
5 |
Wang J L, Liu D P, Dang W Q, et al. Segregation and coalescence behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2021, 544: 152732
|
6 |
Millett P C, Tonks M R, Biner S B, et al. Phase-field simulation of intergranular bubble growth and percolation in bicrystals [J]. J. Nucl. Mater., 2012, 425: 130
|
7 |
Aagesen L K, Andersson D, Beeler B W, et al. Phase-field simulations of intergranular fission gas bubble behavior in U3Si2 nuclear fuel [J]. J. Nucl. Mater., 2020, 541: 152415
|
8 |
Aagesen L K, Schwen D, Tonks M R, et al. Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO2 nuclear fuel [J]. Comput. Mater. Sci., 2019, 161: 35
|
9 |
Zhang C H, Chen K Q, Wang Y S, et al. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials [J]. Nucl. Phys. Rev., 2001, 18: 50
|
9 |
张崇宏, 陈克勤, 王引书 等. 金属材料中氦的扩散与氦泡的形核生长研究 [J]. 原子核物理评论, 2001, 18: 50
|
10 |
Wang J, Yu L M, Huang Y, et al. Effects of dislocation density, temperature and Cr concentration on helium behavior in α-Fe [J]. Comput. Mater. Sci., 2019, 160: 105
|
11 |
Yang Y C, Ding J H, Zhang H L, et al. Atomistic understanding of helium behaviors at grain boundaries in vanadium [J]. Comput. Mater. Sci., 2019, 158: 296
|
12 |
Hu S Y, Beeler B. Gas bubble evolution in polycrystalline UMo fuels under elastic-plastic deformation: A phase-field model with crystal-plasticity [J]. Front. Mater., 2021, 8: 682667
|
13 |
Barani T, Pastore G, Magni A, et al. Modeling intra-granular fission gas bubble evolution and coarsening in uranium dioxide during in-pile transients [J]. J. Nucl. Mater., 2020, 538: 152195
|
14 |
Xiao Z H, Wang Y F, Hu S Y, et al. A quantitative phase-field model of gas bubble evolution in UO2 [J]. Comput. Mater. Sci., 2020, 184: 109867
|
15 |
Wang Y F, Xiao Z H, Hu S Y, et al. A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient [J]. Comput. Mater. Sci., 2020, 183: 109817
|
16 |
Li Y, Ma D C, Wang B. Influence of bulk free energy density on single void evolution based on the phase-field method [J]. Comput. Mater. Sci., 2019, 163: 100
|
17 |
Yang H, Feng Z H, Wang H R, et al. Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy [J]. Acta Phys. Sin., 2021, 70: 054601
|
17 |
杨 辉, 冯泽华, 王贺然 等. Fe-Cr合金辐照空洞微结构演化的相场法模拟 [J]. 物理学报, 2021, 70: 054601
|
18 |
Chen W J, Zhou Y A, Wang S X, et al. Phase field study the effects of interfacial energy anisotropy on the thermal migration of voids [J]. Comput. Mater. Sci., 2019, 159: 177
|
19 |
Hu S Y, Henager C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels [J]. J. Nucl. Mater., 2009, 392: 292
|
20 |
Morishita K, Sugano R. Mechanism map for nucleation and growth of helium bubbles in metals [J]. J. Nucl. Mater., 2006, 353: 52
|
21 |
Trinkaus H. Energetics and formation kinetics of helium bubbles in metals [J]. Radiation Effects, 1983, 78: 189
|
22 |
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
|
23 |
Rodney D, Le Bouar Y, Finel A. Phase field methods and dislocations [J]. Acta Mater., 2003, 51: 17
|
24 |
Wang Y U, Jin Y M, Cuitiño A M, et al. Phase field microelasticity theory and modeling of multiple dislocation dynamics [J]. Appl. Phys. Lett., 2001, 78: 2324
|
25 |
Flynn C P. Atomic migration in monatomic crystals [J]. Phys. Rev., 1968, 171: 920
|
26 |
Millett P C, El-Azab A, Wolf D. Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics [J]. Comput. Mater. Sci., 2011, 50: 960
|
27 |
Was G S. Fundamentals of Radiation Materials Science [M]. Berlin: Springer, 2007: 415
|
28 |
Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier Ltd., 2012: 140
|
29 |
Terentyev D, Juslin N, Nordlund K, et al. Fast three dimensional migration of He clusters in bcc Fe and Fe-Cr alloys [J]. J. Appl. Phys., 2009, 105: 103509
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|