Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1279-1288    DOI: 10.11900/0412.1961.2022.00622
  研究论文 本期目录 | 过刊浏览 |
Fe-Cr合金气泡演化动力学的相场法模拟
刘彩艳1, 冯泽华1, 张云鹏1, 余康2, 吴璐3, 马聪3, 张静2()
1.西安理工大学 材料科学与工程学院 西安 710048
2.西北工业大学 凝固技术国家重点实验室 西安  710072
3.中国核动力研究设计院 成都  610005
Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys
LIU Caiyan1, FENG Zehua1, ZHANG Yunpeng1, YU Kang2, WU Lu3, MA Cong3, ZHANG Jing2()
1.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3.Nuclear Power Institute of China, Chengdu 610005, China
引用本文:

刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
Caiyan LIU, Zehua FENG, Yunpeng ZHANG, Kang YU, Lu WU, Cong MA, Jing ZHANG. Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys[J]. Acta Metall Sin, 2024, 60(9): 1279-1288.

全文: PDF(2062 KB)   HTML
摘要: 

Fe-Cr系合金是反应堆堆芯关键部件用材,辐照缺陷和不溶解嬗变He气等簇聚形成气泡,是该类材料不可逆辐照肿胀和脆性根源。本工作利用介观尺度的相场模型耦合辐照、温度和弹性应力场,研究了合金成分和位错应力场对Fe-Cr合金气泡演化的影响。结果表明,当体系中的气体和空位过饱和时,气体原子优先在空位团簇和位错等异质形核位点处聚集,并吸收空位和气体原子而长大。当气泡长大到一定尺寸时,其气体含量不再增加,主要通过吸收空位来进一步生长,此时气泡内的压力低于相同尺寸气泡的平衡压力,气泡内的空位饱和度较高,气泡主要表现为空洞的性质。Cr元素的加入会降低空位和气体原子的扩散速率,随着合金中Cr含量的增加,气泡的形核孕期延长,延缓气泡的形核和长大。位错应力场通过与空位和气体原子的相互作用,促进气泡优先在刃型位错的拉应力区形核,加速了气泡局域择优形核长大。本工作阐明了影响气泡生长的关键动力学因素,如微结构、扩散等,为辐照气泡组织调控和稳定力学性能提供了重要依据。

关键词 气泡相场法辐照应力场    
Abstract

Fe-Cr alloys are essential materials for core reactor components. The long-term in-core service of these components under intense radiation, thermal, and stress coupling conditions may potentially expedite the degradation of their mechanical properties. Radiation defects and insoluble helium gas molecules are generally trapped in voids or grain boundaries, forming intra- or intergranular fission gas bubbles. These bubbles cause irreversible radiation volumetric swelling and brittleness. However, a comprehensive understanding of the bubble formation process, particularly the effects of Cr content and dislocation stress field on the formation, remains unclear. As a mesoscale simulation approach, the phase field model coupled with irradiation, temperature, and elastic stress has been employed to study bubble evolution influenced by alloy composition and dislocation configuration. This approach offers advantages when addressing bubble-formation-related issues on different spatial and temporal scales. In this work, the phase field method is employed to investigate bubble growth kinetics and the effects of Cr content and dislocation stress field on bubble formation and evolution in Fe-Cr alloy under radiation. The simulations reveal that in an oversaturated gas and vacancy system, gas atoms tend to cluster at heterogeneous nucleation sites, such as vacancy clusters and dislocations, and grow by absorbing vacancy and gas atoms. The bubbles maintain a constant gas concentration up to a certain size as they continue to grow by absorbing vacancies. However, when the vacancy saturation is high, a bubble will behave as a void if its outward pressure is lower than the equilibrium pressure of a bubble of the same size. Cr additives reduce the diffusion rate of gas atoms and vacancies, extending the nucleation period of bubbles and decelerating their growth and coarsening. Dislocations cause vacancies and gaseous atoms to aggregate in the tension stress regions of the edge dislocation, enhancing the bubble's preferential heterogeneous nucleation in that area. This work discusses key kinetic elements affecting bubble evolution, including intrinsic microstructures and diffusivity. Further, it provides inspiration for future material designs for improving irradiation resistance and long-term service stability.

Key wordsbubble    phase field    irradiation    stress field
收稿日期: 2022-12-08     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(U2267253,51704243);陕西省自然科学基础研究计划项目(2022JM-238)
通讯作者: 张 静,jingzhang@nwpu.edu.cn,主要从事金属结构材料的第一性原理、分子动力学、相场计算等研究
Corresponding author: ZHANG Jing, professor, Tel: 13325382529, E-mail: jingzhang@nwpu.edu.cn
作者简介: 刘彩艳,女,1994年生,博士生
图1  刃型位错模型构建时坐标系变换示意图
ParameterSymbolValue
Characteristic timet05 × 10-3 s
Characteristic lengthl00.5 nm
Coefficient of chemical free energyfv*1.651
fg*0.100
fb*-0.29
b0-0.08736[15]
b10.2663[15]
b20.2559[15]
b30.032
Solubility of vacancyCv00.012
Solubility of gas atomCg00.032
Gas gradient coefficientκg*0.05
Vacancy gradient coefficientκv*0.05
Elastic constantC11 in fcc iron154 GPa
C12 in fcc iron122 GPa
C44 in fcc iron77 GPa
C11 in fcc chrome249 GPa
C12 in fcc chrome178 GPa
C44 in fcc chrome143 GPa
Expansion coefficient of vacancyεvac0-0.05
Expansion coefficient of gas atomεgas00.05
表1  模型中采用的无量纲化参数
图2  空洞和气泡协同形核长大过程中空位和气体原子的浓度演化和应力场演化
图3  不同Cr含量合金中气泡的演化过程
图4  不同Cr含量合金中的空位迁移能和扩散系数以及晶格常数的变化
图5  不同Cr含量合金中气泡面积分数与平均半径的统计结果
图6  位错偶极子设置示意图及刃型位错偶极子的应力场分布
图7  位错应力场作用下Fe-0Cr和Fe-13Cr合金中气泡的演化
1 Martin G, Garcia P, Sabathier C, et al. Irradiation-induced heterogeneous nucleation in uranium dioxide [J]. Phys. Lett., 2010, 374A: 3038
2 Gao J, Gaganidze E, Kaiser B, et al. Evolution mechanisms of irradiation-induced helium bubbles, C15 clusters and dislocation loops in ferrite/martensite steels: A cluster dynamics modeling study [J]. J. Nucl. Mater., 2021, 557: 153212
3 Garcia P, Martin G, Sabathier C, et al. Nucleation and growth of intragranular defect and insoluble atom clusters in nuclear oxide fuels [J]. Nucl. Instrum. Methods Phys. Res., 2012, 277B: 98
4 Liang L Y, Mei Z G, Soo Kim Y, et al. Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel [J]. Comput. Mater. Sci., 2018, 145: 86
5 Wang J L, Liu D P, Dang W Q, et al. Segregation and coalescence behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2021, 544: 152732
6 Millett P C, Tonks M R, Biner S B, et al. Phase-field simulation of intergranular bubble growth and percolation in bicrystals [J]. J. Nucl. Mater., 2012, 425: 130
7 Aagesen L K, Andersson D, Beeler B W, et al. Phase-field simulations of intergranular fission gas bubble behavior in U3Si2 nuclear fuel [J]. J. Nucl. Mater., 2020, 541: 152415
8 Aagesen L K, Schwen D, Tonks M R, et al. Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO2 nuclear fuel [J]. Comput. Mater. Sci., 2019, 161: 35
9 Zhang C H, Chen K Q, Wang Y S, et al. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials [J]. Nucl. Phys. Rev., 2001, 18: 50
9 张崇宏, 陈克勤, 王引书 等. 金属材料中氦的扩散与氦泡的形核生长研究 [J]. 原子核物理评论, 2001, 18: 50
10 Wang J, Yu L M, Huang Y, et al. Effects of dislocation density, temperature and Cr concentration on helium behavior in α-Fe [J]. Comput. Mater. Sci., 2019, 160: 105
11 Yang Y C, Ding J H, Zhang H L, et al. Atomistic understanding of helium behaviors at grain boundaries in vanadium [J]. Comput. Mater. Sci., 2019, 158: 296
12 Hu S Y, Beeler B. Gas bubble evolution in polycrystalline UMo fuels under elastic-plastic deformation: A phase-field model with crystal-plasticity [J]. Front. Mater., 2021, 8: 682667
13 Barani T, Pastore G, Magni A, et al. Modeling intra-granular fission gas bubble evolution and coarsening in uranium dioxide during in-pile transients [J]. J. Nucl. Mater., 2020, 538: 152195
14 Xiao Z H, Wang Y F, Hu S Y, et al. A quantitative phase-field model of gas bubble evolution in UO2 [J]. Comput. Mater. Sci., 2020, 184: 109867
15 Wang Y F, Xiao Z H, Hu S Y, et al. A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient [J]. Comput. Mater. Sci., 2020, 183: 109817
16 Li Y, Ma D C, Wang B. Influence of bulk free energy density on single void evolution based on the phase-field method [J]. Comput. Mater. Sci., 2019, 163: 100
17 Yang H, Feng Z H, Wang H R, et al. Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy [J]. Acta Phys. Sin., 2021, 70: 054601
17 杨 辉, 冯泽华, 王贺然 等. Fe-Cr合金辐照空洞微结构演化的相场法模拟 [J]. 物理学报, 2021, 70: 054601
18 Chen W J, Zhou Y A, Wang S X, et al. Phase field study the effects of interfacial energy anisotropy on the thermal migration of voids [J]. Comput. Mater. Sci., 2019, 159: 177
19 Hu S Y, Henager C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels [J]. J. Nucl. Mater., 2009, 392: 292
20 Morishita K, Sugano R. Mechanism map for nucleation and growth of helium bubbles in metals [J]. J. Nucl. Mater., 2006, 353: 52
21 Trinkaus H. Energetics and formation kinetics of helium bubbles in metals [J]. Radiation Effects, 1983, 78: 189
22 Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
23 Rodney D, Le Bouar Y, Finel A. Phase field methods and dislocations [J]. Acta Mater., 2003, 51: 17
24 Wang Y U, Jin Y M, Cuitiño A M, et al. Phase field microelasticity theory and modeling of multiple dislocation dynamics [J]. Appl. Phys. Lett., 2001, 78: 2324
25 Flynn C P. Atomic migration in monatomic crystals [J]. Phys. Rev., 1968, 171: 920
26 Millett P C, El-Azab A, Wolf D. Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics [J]. Comput. Mater. Sci., 2011, 50: 960
27 Was G S. Fundamentals of Radiation Materials Science [M]. Berlin: Springer, 2007: 415
28 Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier Ltd., 2012: 140
29 Terentyev D, Juslin N, Nordlund K, et al. Fast three dimensional migration of He clusters in bcc Fe and Fe-Cr alloys [J]. J. Appl. Phys., 2009, 105: 103509
[1] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[6] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[7] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[8] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[11] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[12] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[13] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[14] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[15] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.