|
|
(111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性 |
许增光1,2,3, 周士祺1,3, 李晓1,3, 刘志权1,2,3( ) |
1 中国科学院深圳先进技术研究院 深圳 518055 2 中国科学院大学 深圳先进技术学院 深圳 518055 3 深圳先进电子材料国际创新研究院 深圳 518103 |
|
Excellent Oxidation Resistance and Solder Wettability of (111)-Oriented Nanotwinned Cu |
XU Zengguang1,2,3, ZHOU Shiqi1,3, LI Xiao1,3, LIU Zhiquan1,2,3( ) |
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China 2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China 3 Shenzhen Institute of Advanced Electronic Materials, Shenzhen 518103, China |
引用本文:
许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
Zengguang XU,
Shiqi ZHOU,
Xiao LI,
Zhiquan LIU.
Excellent Oxidation Resistance and Solder Wettability of (111)-Oriented Nanotwinned Cu[J]. Acta Metall Sin, 2024, 60(7): 957-967.
1 |
Huang J, Li Z G, Gao L Y, et al. Effect of methylene blue on the microstructure and mechanical properties of nanotwinned copper during DC electroplating [J]. J. Integr. Technol., 2021, 10(1): 55
|
1 |
黄 静, 李忠国, 高丽茵 等. 亚甲基蓝对直流电镀纳米孪晶铜组织及力学性能的影响 [J]. 集成技术, 2021, 10(1): 55
|
2 |
Ko C T, Chen K N. Wafer-level bonding/stacking technology for 3D integration [J]. Microelectron. Reliab., 2010, 50: 481
|
3 |
Li X, Luo J X. The oxidation of copper at 200-900oC [J]. Acta Metall. Sin., 1965, 8: 311
|
3 |
李 薰, 骆继勋. 铜在200~900℃的氧化 [J]. 金属学报, 1965, 8: 311
|
4 |
Kusano K F, Uchikoshi M, Mimura K, et al. Low-temperature oxidation of Cu(100), Cu(110) and Cu(111) [J]. Oxid. Met., 2014, 82: 181
|
5 |
Young F W, Cathcart J V, Gwathmey A T. The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light [J]. Acta Metall., 1956, 4: 145
|
6 |
Hsiao H Y, Liu C M, Lin H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper [J]. Science, 2012, 336: 1007
|
7 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
8 |
Guo J Y, Wang K, Lu L. Tensile properties of Cu with deformation twins induced by SMAT [J]. J. Mater. Sci. Technol., 2006, 22: 789
|
9 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
10 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
11 |
Sun F L, Liu Z Q, Li C F, et al. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via [J]. Materials., 2018, 11: 319
|
12 |
Juang J Y, Shie K C, Hsu P N, et al. Low-resistance and high-strength copper direct bonding in no-vacuum ambient using highly (111)-oriented nano-twinned copper [A]. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: Institute of Electrical and Electronics Engineers, 2019: 642
|
13 |
Liu C M, Lin H W, Huang Y S, et al. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu [J]. Sci. Rep., 2015, 5: 9734
|
14 |
Agrawal P M, Rice B M, Thompson D L. Predicting trends in rate parameters for self-diffusion on FCC metal surfaces [J]. Surf. Sci., 2002, 515: 21
|
15 |
Lin H W, Lu C L, Liu C M, et al. Microstructure control of unidirectional growth of η-Cu6Sn5 in microbumps on 〈111〉 oriented and nanotwinned Cu [J]. Acta Mater., 2013, 61: 4910
|
16 |
Zhou S Q, Zhang Y B, Gao L Y, et al. The self-healing of Kirkendall voids on the interface between Sn and (111) oriented nanotwinned Cu under thermal aging [J]. Appl. Surf. Sci., 2022, 588: 152900
|
17 |
Tseng C H, Tu K N, Chen C. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding [J]. Sci. Rep., 2018, 8: 10671
|
18 |
Zhang M H, Gao L Y, Wang Y X, et al. Micro-cones Cu fabricated by pulse electrodeposition for solderless Cu-Cu direct bonding [J]. Appl. Surf. Sci., 2024, 650: 159184
|
19 |
Wen S M, Wang B L, Zhao C W, et al. Study on microstructure and hardness of direct-current electrodeposited nanotwinned Cu [J]. Hot Working Technol., 2017, 46(12): 107
|
19 |
温淑敏, 王博林, 赵春旺 等. 直流电解沉积纳米孪晶铜的微观结构与硬度研究 [J]. 热加工工艺, 2017, 46(12): 107
|
20 |
Li Z G, Gao L Y, Liu Z Q. The effect of transition layer on the strength of nanotwinned copper film by DC electrodeposition [A]. 21st International Conference on Electronic Packaging Technology (ICEPT) [C]. Guangzhou: Institute of Electrical and Electronics Engineers, 2020: 1
|
21 |
Li Z G, Gao L Y, Li Z, et al. Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate [J]. J. Mater. Sci., 2022, 57: 17797
|
22 |
Xiao J W. Investigation on mechanical properties of nanotwinned diamond and nanotwinned copper [D]. Qinhuangdao: Yanshan University, 2018
|
22 |
肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究 [D]. 秦皇岛: 燕山大学, 2018
|
23 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
|
24 |
Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
|
25 |
Liu J. Fatigue fracture analysis of nano-twinned copper under cyclic tensile loading [D]. Harbin: Harbin Engineering University, 2021
|
25 |
刘 进. 循环拉伸载荷下纳米孪晶铜的疲劳断裂分析 [D]. 哈尔滨: 哈尔滨工程大学, 2021
|
26 |
Pan Q S, Lu L. Dislocation characterization in fatigued Cu with nanoscale twins [J]. Sci. China Mater., 2015, 58: 915
|
27 |
Zhou X L, Li X Y, Chen C Q. Atomistic mechanisms of fatigue in nanotwinned metals [J]. Acta Mater., 2015, 99: 77
|
28 |
Pan Q S, Zhou H F, Lu Q H, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
|
29 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362:eaau1925
|
30 |
Zhang Y B, Gao L Y, Tao J L, et al. The mechanical property and microstructural thermal stability of gradient-microstructured nanotwinned copper films electroplated on the high (111)-orientated sub-strates [J]. Mater. Today Commun., 2024, 38: 108182
|
31 |
Sun F L, Gao L Y, Liu Z Q, et al. Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate [J]. J. Mater. Sci. Technol., 2018, 34: 1885
|
32 |
Zhang Y B, Gao L Y, Li X, et al. Electroplating nanotwinned copper for ultrafine pitch redistribution layer (RDL) of advanced packaging technology [A]. 22nd International Conference on Electronic Packaging Technology (ICEPT) [C]. Xiamen: Institute of Electrical and Electronics Engineers, 2021: 1
|
33 |
Zhang Y B. Research on preparation and reliability of nanotwinned copper interconnect materials for microelectronic packaging [D]. Harbin: Harbin University of Science and Technology, 2022
|
33 |
张玉博. 微电子封装用纳米孪晶铜互连材料的制备及可靠性研究 [D]. 哈尔滨: 哈尔滨理工大学, 2022
|
34 |
Kuroyanagi T. Copper and its alloy [J]. J. Met. Finish. Soc., 1980, 31: 432
|
34 |
黒柳 卓. 銅·銅合金 [J]. 金属表面技術, 1980, 31: 432
|
35 |
Nakata S. Regarding discoloration of copper and copper alloys [J]. Corros. Eng. Dig., 1959, 8: 291
|
35 |
仲田 進一. 銅および銅合金の変色について [J]. 防蝕技術, 1959, 8: 291
|
36 |
Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J]. Appl. Surf. Sci., 2010, 257: 887
|
37 |
Lu Z H. Study on the oxidation behavior of single crystal copper [D]. Lanzhou: Lanzhou University of Technology, 2010
|
37 |
卢振华. 单晶铜氧化行为的研究 [D]. 兰州: 兰州理工大学, 2010
|
38 |
Shang P J, Liu Z Q, Pang X Y, et al. Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates [J]. Acta Mater., 2009, 57: 4697
|
39 |
Askeland D R, Phule P P. The Science and Engineering of Materials [M]. 4th Ed., London: Brooks/Cole Publishing/Thompson Learning, 2003: 86
|
40 |
Huang M L, Wu Y. Growth mechanism of interfacial IMCs on (111) preferred orientation nanotwinned Cu UBM for 3D IC packaging [A]. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [C]. Orlando: Institute of Electrical and Electronics Engineers, 2020: 1881
|
41 |
Han Z, Lu L, Zhang H W, et al. Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper [J]. Oxid. Met., 2005, 63: 261
|
42 |
Zhang L, Liu Z Q. Inhibition of intermetallic compounds growth at Sn-58Bi / Cu interface bearing CuZnAl memory particles (2-6 μm) [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2466
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|