Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 957-967    DOI: 10.11900/0412.1961.2022.00334
  研究论文 本期目录 | 过刊浏览 |
(111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性
许增光1,2,3, 周士祺1,3, 李晓1,3, 刘志权1,2,3()
1 中国科学院深圳先进技术研究院 深圳 518055
2 中国科学院大学 深圳先进技术学院 深圳 518055
3 深圳先进电子材料国际创新研究院 深圳 518103
Excellent Oxidation Resistance and Solder Wettability of (111)-Oriented Nanotwinned Cu
XU Zengguang1,2,3, ZHOU Shiqi1,3, LI Xiao1,3, LIU Zhiquan1,2,3()
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
3 Shenzhen Institute of Advanced Electronic Materials, Shenzhen 518103, China
引用本文:

许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
Zengguang XU, Shiqi ZHOU, Xiao LI, Zhiquan LIU. Excellent Oxidation Resistance and Solder Wettability of (111)-Oriented Nanotwinned Cu[J]. Acta Metall Sin, 2024, 60(7): 957-967.

全文: PDF(3759 KB)   HTML
摘要: 

在先进封装产业中,(111)取向纳米孪晶Cu ((111)nt-Cu)与一般随机取向多晶组织Cu (C-Cu)相比具有多种优势,包括高强度、出色的延伸率和良好的导电性。近年来,3D封装以及器件小型化的趋势对先进封装中电镀Cu材料理化性能提出了更加严苛的要求,C-Cu直接暴露在空气中容易氧化是先进封装制程中亟待解决的问题,(111)nt-Cu成为代替C-Cu的潜在方案。本工作从Cu基体的氧化层厚度和焊料在Cu基体上的润湿性2个方面,对电镀(111)nt-Cu和C-Cu的抗氧化性能进行了深入分析研究。运用TEM、XPS表征方法,对氧化层成分与厚度进行了测量;采用EBSD和FIB等手段对Cu基体表面的晶界以及晶粒尺寸进行了测量和分析;使用SEM对2种Cu基体/氧化层界面形貌进行了精细表征。结果表明,在250℃空气气氛下,(111)nt-Cu具有比C-Cu更好的抗氧化性能。氧化时间为9 min时,(111)nt-Cu氧化层厚度仅为C-Cu氧化层厚度的43.2%。氧化12 min后,(111)nt-Cu与纯Sn反应制作的焊点的接触角比C-Cu的小26.7%,且焊料铺展面积比C-Cu的大24.6%。2种Cu基体上都生成了含有纳米晶CuO和Cu2O两相混合结构氧化层。(111)nt-Cu具有更好的抗氧化性能,原因是(111)晶面和内部的孪晶界具有更低的表面能,并且其基体表面有更小的大角度晶界面积分数,有效地限制了Cu原子向外的扩散速率。

关键词 (111)取向纳米孪晶Cu随机取向多晶Cu抗氧化性焊料润湿性晶界扩散    
Abstract

In the advanced-packaging industry, (111)-oriented nanotwinned copper ((111)nt-Cu) offers several advantages over common randomly oriented equiaxed polycrystalline Cu (C-Cu), including high strength, excellent elongation, and promising electrical conductivity. In recent years, (111)nt-Cu has shown potential for becoming a C-Cu replacement in under-bump metallization and redistribution layer applications. This shift is attributed to the escalating demand for thermal stability and enhanced electrical and mechanical performances of Cu materials amid the rapid transition toward three-dimensional electronic packaging. This study proposed that (111)nt-Cu exhibits better oxidation resistance than C-Cu after aging in air at 250oC. The thickness and composition of (111)nt-Cu and C-Cu oxide layers were analyzed respectively via TEM and XPS. Various grain boundaries on the surface of the prepared (111)nt-Cu and C-Cu substrates were evaluated using EBSD and FIB techniques. The morphology at the interface between the two Cu substrates and their oxide layers was characterized using SEM. In addition, the solderability of the oxidized layers was assessed by measuring the wetting angles and spreading areas of the involved Sn-Cu joint structures. Results show that when the oxidation time was 9 min, the thickness of the (111)nt-Cu oxide layer was 43.2% lesser than that of the C-Cu oxide layer. After 12 min of oxidation, the contact angle between Sn and oxidized (111)nt-Cu was 26.7% smaller than that between Sn and oxidized C-Cu, while the spreading area of Sn on (111)nt-Cu was 24.6% larger than that of Sn on C-Cu. After oxidation, the surface layers of both Cu substrates comprised CuO and Cu2O nanocrystals coexisting within the same layer. Because oxidation is closely related to the diffusion of Cu atoms through grain boundaries, the grain boundaries of both Cu substrates were investigated in the natural-growth direction. The results show that compared to C-Cu, (111)nt-Cu has a lower surface energy and smaller area fraction of high angle grain boundaries, effectively limiting the outward-diffusion rate of Cu atoms.

Key words(111)-oriented nanotwinned copper    randomly oriented equiaxed polycrystalline copper    oxi-dation resistance    soldering wettability    grain boundary diffusion
收稿日期: 2022-07-08     
ZTFLH:  TN405  
基金资助:国家自然科学基金项目(62274172);广东省基础与应用基础研究基金项目(2022B1515120037)
通讯作者: 刘志权,zqliu@siat.ac.cn,主要从事金属电子封装材料及封装结构服役可靠性研究
Corresponding author: LIU Zhiquan, professor, Tel: 18624083161, E-mail: zqliu@siat.ac.cn
作者简介: 许增光,男,1997年生,硕士
图1  (111)取向纳米孪晶Cu ((111)nt-Cu)样品制备的电镀工艺流程
图2  在250℃不同氧化时间下(111)nt-Cu和一般随机取向多晶组织Cu (C-Cu)样品表面的颜色变化(样品尺寸1 cm × 1 cm)
图3  氧化后(111)nt-Cu和C-Cu样品表面的XPS分析
图4  (111)nt-Cu和C-Cu样品氧化层截面的SEM像和FIB像
图5  (111)nt-Cu和C-Cu样品氧化层截面的TEM明场像、HRTEM像和选区电子衍射花样
图6  250℃下(111)nt-Cu和C-Cu样品接触角随氧化时间的变化
图7  250℃不同氧化时间下焊料在(111)nt-Cu和C-Cu样品表面的铺展面积云图
Sample0 min3 min12 min
(111)nt-Cu2.6392.2761.896
C-Cu2.1322.0151.522
表1  250℃不同氧化时间下焊料在(111)nt-Cu和C-Cu样品表面的铺展面积 (mm2)
图8  (111)nt-Cu和C-Cu样品表面氧化前的EBSD像和氧化后的FIB像
SampleArea fraction of LAGB %Area fraction of HAGB %Grain boundary length μmTwin boundary length μm
(111)nt-Cu11.188.9562113814
C-Cu0.999.125367109
表2  (111)nt-Cu和C-Cu样品的晶界统计信息
图9  (111)nt-Cu和C-Cu样品氧化前表面的晶粒取向差角分布和晶粒尺寸分布
图10  氧化前(111)nt-Cu和C-Cu样品截面的FIB像以及Cu在晶界处扩散的示意图
1 Huang J, Li Z G, Gao L Y, et al. Effect of methylene blue on the microstructure and mechanical properties of nanotwinned copper during DC electroplating [J]. J. Integr. Technol., 2021, 10(1): 55
1 黄 静, 李忠国, 高丽茵 等. 亚甲基蓝对直流电镀纳米孪晶铜组织及力学性能的影响 [J]. 集成技术, 2021, 10(1): 55
2 Ko C T, Chen K N. Wafer-level bonding/stacking technology for 3D integration [J]. Microelectron. Reliab., 2010, 50: 481
3 Li X, Luo J X. The oxidation of copper at 200-900oC [J]. Acta Metall. Sin., 1965, 8: 311
3 李 薰, 骆继勋. 铜在200~900℃的氧化 [J]. 金属学报, 1965, 8: 311
4 Kusano K F, Uchikoshi M, Mimura K, et al. Low-temperature oxidation of Cu(100), Cu(110) and Cu(111) [J]. Oxid. Met., 2014, 82: 181
5 Young F W, Cathcart J V, Gwathmey A T. The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light [J]. Acta Metall., 1956, 4: 145
6 Hsiao H Y, Liu C M, Lin H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper [J]. Science, 2012, 336: 1007
7 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
8 Guo J Y, Wang K, Lu L. Tensile properties of Cu with deformation twins induced by SMAT [J]. J. Mater. Sci. Technol., 2006, 22: 789
9 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
10 Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641 pmid: 19179523
11 Sun F L, Liu Z Q, Li C F, et al. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via [J]. Materials., 2018, 11: 319
12 Juang J Y, Shie K C, Hsu P N, et al. Low-resistance and high-strength copper direct bonding in no-vacuum ambient using highly (111)-oriented nano-twinned copper [A]. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: Institute of Electrical and Electronics Engineers, 2019: 642
13 Liu C M, Lin H W, Huang Y S, et al. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu [J]. Sci. Rep., 2015, 5: 9734
14 Agrawal P M, Rice B M, Thompson D L. Predicting trends in rate parameters for self-diffusion on FCC metal surfaces [J]. Surf. Sci., 2002, 515: 21
15 Lin H W, Lu C L, Liu C M, et al. Microstructure control of unidirectional growth of η-Cu6Sn5 in microbumps on 〈111〉 oriented and nanotwinned Cu [J]. Acta Mater., 2013, 61: 4910
16 Zhou S Q, Zhang Y B, Gao L Y, et al. The self-healing of Kirkendall voids on the interface between Sn and (111) oriented nanotwinned Cu under thermal aging [J]. Appl. Surf. Sci., 2022, 588: 152900
17 Tseng C H, Tu K N, Chen C. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding [J]. Sci. Rep., 2018, 8: 10671
18 Zhang M H, Gao L Y, Wang Y X, et al. Micro-cones Cu fabricated by pulse electrodeposition for solderless Cu-Cu direct bonding [J]. Appl. Surf. Sci., 2024, 650: 159184
19 Wen S M, Wang B L, Zhao C W, et al. Study on microstructure and hardness of direct-current electrodeposited nanotwinned Cu [J]. Hot Working Technol., 2017, 46(12): 107
19 温淑敏, 王博林, 赵春旺 等. 直流电解沉积纳米孪晶铜的微观结构与硬度研究 [J]. 热加工工艺, 2017, 46(12): 107
20 Li Z G, Gao L Y, Liu Z Q. The effect of transition layer on the strength of nanotwinned copper film by DC electrodeposition [A]. 21st International Conference on Electronic Packaging Technology (ICEPT) [C]. Guangzhou: Institute of Electrical and Electronics Engineers, 2020: 1
21 Li Z G, Gao L Y, Li Z, et al. Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate [J]. J. Mater. Sci., 2022, 57: 17797
22 Xiao J W. Investigation on mechanical properties of nanotwinned diamond and nanotwinned copper [D]. Qinhuangdao: Yanshan University, 2018
22 肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究 [D]. 秦皇岛: 燕山大学, 2018
23 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
24 Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
25 Liu J. Fatigue fracture analysis of nano-twinned copper under cyclic tensile loading [D]. Harbin: Harbin Engineering University, 2021
25 刘 进. 循环拉伸载荷下纳米孪晶铜的疲劳断裂分析 [D]. 哈尔滨: 哈尔滨工程大学, 2021
26 Pan Q S, Lu L. Dislocation characterization in fatigued Cu with nanoscale twins [J]. Sci. China Mater., 2015, 58: 915
27 Zhou X L, Li X Y, Chen C Q. Atomistic mechanisms of fatigue in nanotwinned metals [J]. Acta Mater., 2015, 99: 77
28 Pan Q S, Zhou H F, Lu Q H, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
29 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362:eaau1925
30 Zhang Y B, Gao L Y, Tao J L, et al. The mechanical property and microstructural thermal stability of gradient-microstructured nanotwinned copper films electroplated on the high (111)-orientated sub-strates [J]. Mater. Today Commun., 2024, 38: 108182
31 Sun F L, Gao L Y, Liu Z Q, et al. Electrodeposition and growth mechanism of preferentially orientated nanotwinned Cu on silicon wafer substrate [J]. J. Mater. Sci. Technol., 2018, 34: 1885
32 Zhang Y B, Gao L Y, Li X, et al. Electroplating nanotwinned copper for ultrafine pitch redistribution layer (RDL) of advanced packaging technology [A]. 22nd International Conference on Electronic Packaging Technology (ICEPT) [C]. Xiamen: Institute of Electrical and Electronics Engineers, 2021: 1
33 Zhang Y B. Research on preparation and reliability of nanotwinned copper interconnect materials for microelectronic packaging [D]. Harbin: Harbin University of Science and Technology, 2022
33 张玉博. 微电子封装用纳米孪晶铜互连材料的制备及可靠性研究 [D]. 哈尔滨: 哈尔滨理工大学, 2022
34 Kuroyanagi T. Copper and its alloy [J]. J. Met. Finish. Soc., 1980, 31: 432
34 黒柳 卓. 銅·銅合金 [J]. 金属表面技術, 1980, 31: 432
35 Nakata S. Regarding discoloration of copper and copper alloys [J]. Corros. Eng. Dig., 1959, 8: 291
35 仲田 進一. 銅および銅合金の変色について [J]. 防蝕技術, 1959, 8: 291
36 Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J]. Appl. Surf. Sci., 2010, 257: 887
37 Lu Z H. Study on the oxidation behavior of single crystal copper [D]. Lanzhou: Lanzhou University of Technology, 2010
37 卢振华. 单晶铜氧化行为的研究 [D]. 兰州: 兰州理工大学, 2010
38 Shang P J, Liu Z Q, Pang X Y, et al. Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates [J]. Acta Mater., 2009, 57: 4697
39 Askeland D R, Phule P P. The Science and Engineering of Materials [M]. 4th Ed., London: Brooks/Cole Publishing/Thompson Learning, 2003: 86
40 Huang M L, Wu Y. Growth mechanism of interfacial IMCs on (111) preferred orientation nanotwinned Cu UBM for 3D IC packaging [A]. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) [C]. Orlando: Institute of Electrical and Electronics Engineers, 2020: 1881
41 Han Z, Lu L, Zhang H W, et al. Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper [J]. Oxid. Met., 2005, 63: 261
42 Zhang L, Liu Z Q. Inhibition of intermetallic compounds growth at Sn-58Bi / Cu interface bearing CuZnAl memory particles (2-6 μm) [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2466
[1] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[2] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[3] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[4] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[5] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[6] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[7] 李轩, 郭喜平, 乔彦强. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2复合渗层的组织及其抗高温氧化性能*[J]. 金属学报, 2015, 51(6): 693-700.
[8] 赵海根,李树索,裴延玲,宫声凯,徐惠彬. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287.
[9] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[10] 范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
[11] 张平 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.
[12] 田艳红 王春青 赵少伟. Cu焊盘TiN/Ag金属化层超声键合性能及抗氧化性能[J]. 金属学报, 2010, 46(5): 618-622.
[13] 郭建亭; 袁超; 侯介山 . 稀土元素在NiAl合金中的作用[J]. 金属学报, 2008, 44(5): 513-520 .
[14] 闫军; 杜仕国; 崔海萍; 刘献杰 . 涂覆Mannich碱对Cu粉抗氧化性能的影响[J]. 金属学报, 2007, 43(4): 388-392 .
[15] 马北越; 于景坤; 孙勇 . ZrO2--SiC复合材料的合成及其添加对Al2O3-C质耐火材料抗氧化性能的影响[J]. 金属学报, 2007, 43(10): 1059-1064 .