Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1279-1287    DOI: 10.11900/0412.1961.2015.00434
  本期目录 | 过刊浏览 |
Ni3Al基单晶合金IC21的微观组织及力学性能
赵海根,李树索,裴延玲,宫声凯(),徐惠彬
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21
Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG(),Huibin XU
School of Materials Science and Engineering, Beihang University, Beijing 100191
全文: PDF(12250 KB)   HTML
摘要: 

针对高压涡轮导向叶片服役性能需求特点研发了一种低密度、低成本、高强度Ni3Al基单晶合金IC21. 该合金的Re含量不大于1.5%, 密度小于8.0 g/cm3. 金相法测得合金的初熔温度约为1345 ℃. 经过标准热处理后, IC21合金中g'相分布均匀, 体积分数为80%左右, 尺寸约为420 nm, 具有较高的g'相立方化程度和排列有序度. IC21单晶合金在1100 ℃下抗拉强度为490 MPa, 屈服强度为470 MPa, 在1100 ℃, 140 MPa条件下的持久寿命可达170.5 h, 1150 ℃, 100 MPa条件下的持久寿命可达110.0 h. IC21单晶合金具有良好的高温组织稳定性和较好的抗高温氧化性, 1080 ℃长期热暴露后, 没有拓扑密堆相析出, 在1100 和1150 ℃大气中100 h的氧化动力学曲线遵循抛物线规律, 氧化增重速率分别为0.015和0.045 mg/(cm2h). 组织结构分析表明, 该单晶合金的高温强度主要来源于高的g'相含量、高的合金错配度和致密的界面位错网结构.

关键词 Ni3AlIC21单晶合金低成本低密度高温力学性能抗氧化性能    
Abstract

According to the requirement of high-pressure turbine guide vane during service, the aim of this work is to design a single crystal Ni3Al-based alloy named IC21 with low density, low cost, and high strength which can be used as high-pressure turbine guide vane material. The mass fraction of the Re has been limited less than 1.5% on purpose. The single crystal bars of IC21 were prepared by high rate solidification method. The density of IC21 is 8.0 g/cm3 and the incipient melting temperature was identified by metallography. After standard heat treatment, the distribution of the g' precipitates is uniform with the average size of about 420 nm, and volume fraction of 80%. The tensile and yield strengths at 1100 ℃ are 490 and 470 MPa, respectively. Moreover, IC21 shows superior creep properties, the stress-rupture life at 1100 ℃,140 MPa is 170.5 h and at 1150 ℃,100 MPa still remains 110.0 h. The microstructure stability of IC21 alloy at 1080 ℃ for as long as 1000 h were evaluated. The results show that no precipitated phase exists during thermal exposure at 1080 ℃, which exhibits good stability. The oxidation kinetic curves of IC21 alloy follows a parabolic rate law in different oxidation stage during cycle oxidation for 100 h in air. IC21 alloy has a good high temperature oxidation resistance, the strengthening mechanism are attributed to high volume fraction of g' phase, large negative misfit and well-established interface networks.

Key wordsNi3Al    IC21 single crystal alloy    low cost    low density    high temperature strength    high temperature oxidation resistance
    
基金资助:* 国家自然科学基金项目51371014和国家自然科学基金联合基金项目U1435207资助

引用本文:

赵海根,李树索,裴延玲,宫声凯,徐惠彬. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287.
Haigen ZHAO, Shusuo LI, Yanling PEI, Shengkai GONG, Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21. Acta Metall Sin, 2015, 51(10): 1279-1287.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00434      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1279

图1  IC21单晶合金铸态组织横截面和纵截面的BSE像
图2  不同时效制度处理后IC21单晶合金的SEM像[13]
图3  IC21单晶合金在1080 ℃热暴露不同时间后的SEM像[13]
Temperature / ℃ sb / MPa sp0.2 / MPa d / % Φ / %
RT 812 784 25.2 22.2
886 834 15.2 16.9
760 1050 980 12.0 37.3
995 911 12.4 38.7
850 1017 954 51.2 40.2
937 889 73.2 46.5
980 690 670 41.5 39.0
685 650 55.0 49.5
1100 490 470 33.0 64.0
505 498 35.0 71.5
1150 350 330 47.0 78.0
350 330 44.0 74.5
表2  IC21 单晶合金在不同温度下的拉伸性能[13]
图4  温度对CMSX-4和IC21单晶合金屈服强度和延伸率的影响[21]
图5  IC21单晶合金在1100 ℃热暴露不同时间后的界面位错网结构[13,27]
Temperature / ℃ Orientationdeviation / (°) Stress / MPa Life / h d / %
760 10 600 324.8 31.2
4 750 69.8 29.5
6 71.0 21.8
850 6 450 252.4 28.2
7 271.8 27.4
6 500 64.4 17.5
5 75.4 16.8
980 8 22 121.9 50.2
7 141.5 47.3
8 250 76.5 43.7
8 84.0 50.1
1100 10 140 170.5 12.1
8 159.2 6.7
1150 8 100 110.0 10.8
8 99.0 9.9
表2  IC21单晶合金中温和高温持久性能[13]
图6  IC21单晶合金在1100和1150 ℃的循环氧化增重动力学曲线
图7  复杂薄壁IC21单晶铸件的微观组织和区域放大图
[1] Chen J G. Aerona Sci Technol, 1994; (5): 9 (陈金国. 航空科学技术, 1994; (5): 9)
[2] Kong X X. Aerona Sci Technol, 1994; (5): 21 (孔祥鑫. 航空科学技术, 1994; (5): 21)
[3] Sequeira C A C, Amaral L. Corros Prot Mater, 2013; 32(3): 75
[4] Zheng Y R, Wang X P, Dong J X, Han Y F. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Proc of 9th Int Symposium on Superalloys, Warrendale: TMS, 2000; 305
[5] Frazier D J, Whetstone J R, Harris K, Erickson G L, Schwer R E. High Temperature Materials for Power Engineering. Boston: Kluwer Academic Publishers, 1990: 1281
[6] Waudby P E, Benson J M, Stander C M, Pennefather R, McColvin G. Advances in Turbine Materials Design and Manufacturing. London: Institute of Materials, 1997: 322
[7] Quan D L, Liu S L, Li J H,?Liu G W. J Therm Sci, 2005; 14(1): 56
[8] Leontiev A I. J Heat Transfer, 1998; 121: 509
[9] Hartnett J P, Rohsenow W M. Handbook of Heat Transfer Applications. New York: McGraw-Hill Professional, 1985: 1
[10] Song J X, Xiao C B, Li S S, Han Y F. Acta Metall Sin, 2002; 38: 250 (宋尽霞, 肖程波, 李树索, 韩雅芳. 金属学报, 2002; 38: 250)
[11] Xiao C B, Han Y F, Li S S, Wang D G, Song J X, Li Q. Mater Lett, 2003; 57: 3843
[12] Ding R G, Ojo O A. Scr Mater, 2006; 54: 859
[13] Zhang H. PhD Dissertation, Beihang University, 2015 (张 恒. 北京航空航天大学博士学位论文, 2015)
[14] Sajjadi S A, Zebarjad S M, Guthrie R I L, Isac M. J Mater Process Technol, 2006; 175: 376
[15] Mulier L, Glatzel U, Feller K. Acta Metall Mater, 1992; 40: 1321
[16] Glatzedl U, Feller-Kniepmeier M. Scr Metall, 1989; 23: 1839
[17] Zhang J H, Yao X D, Zhang Z Y, Li Y A, Guan H R, Hu Z Q. Acta Metall Sin, 1994; 30: 453 (张静华, 姚向东, 张志亚, 李英敖, 管恒荣, 胡壮麒. 金属学报, 1994; 30: 453)
[18] Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2001; 25(4): 7 (任英磊, 金 涛, 管恒荣, 胡壮麒. 机械工程材料, 2001; 25(4): 7)
[19] Ning L K, Zheng Z, Jin T, Tang S, Liu E Z, Tong J, Yu Y S, Sun X F. Acta Metall Sin, 2014; 30: 1011 (宁礼奎, 郑 志, 金 涛, 唐 颂, 刘恩泽, 佟 健, 于永泗, 孙晓峰. 金属学报, 2014; 30: 1011)
[20] Wei L. Master Thesis, Beihang University, 2011 (魏 丽. 北京航空航天大学硕士学位论文, 2011)
[21] Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nailos P J, Peputapeck M, Alberts F E. J Mater Eng Perform, 1994; 3: 73
[22] Pollock T M, Argon A. Acta Metall Mater, 1992; 40: 1
[23] Zhang J X, Murakumo T, Koizumi Y, Harada H. J Mater Sci, 2003; 38: 4883
[24] Zhang J X, Wang J C, Harada H, Koizumi Y J. Acta Mater, 2005; 53: 4623
[25] Yang S, Zhang J, Luo Y S, Zhao Y S, Tang D Z, Cao G Q. Mater Sci Forum, 2013; 747: 777
[26] Feller K M, Link T. Metall Trans, 1989; 20A: 1233
[27] Liu L. PhD Dissertation, Beihang University, 2014 (刘 磊. 北京航空航天大学博士学位论文, 2014)
[28] Huang L, Sun X F, Guan H R, Hu Z Q. Surf Coat Technol, 2006; 200: 6863
[29] Ying W, Toshio N. Surf Coat Technol, 2007; 202; 140
[1] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[2] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[3] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[4] 王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
[5] 李轩, 郭喜平, 乔彦强. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2复合渗层的组织及其抗高温氧化性能*[J]. 金属学报, 2015, 51(6): 693-700.
[6] 杨锐. 钛铝金属间化合物的进展与挑战*[J]. 金属学报, 2015, 51(2): 129-147.
[7] 范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
[8] 张平 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.
[9] 田艳红 王春青 赵少伟. Cu焊盘TiN/Ag金属化层超声键合性能及抗氧化性能[J]. 金属学报, 2010, 46(5): 618-622.
[10] 郭建亭; 袁超; 侯介山 . 稀土元素在NiAl合金中的作用[J]. 金属学报, 2008, 44(5): 513-520 .
[11] 陈志勇; 王清江; 刘建荣; 李玉兰; 杨锐; 李晋炜; 刘方军 . Ti-60高温钛合金电子束焊接接头高温下的损伤失效行为研究[J]. 金属学报, 2008, 44(3): 263-271 .
[12] 崔传勇; 郭建亭 . 定向凝固NiAl合金的微观组织和高温力学性能Ⅱ.高温力学性能和界面[J]. 金属学报, 2000, 36(11): 1144-1148 .
[13] 朱跃峰;曾大本;黄惠松;吴德海. ZA27合金的高温拉伸性能[J]. 金属学报, 1997, 33(5): 499-503.
[14] 张济山;崔华;胡壮麒;村田纯教;森永正彦;汤川夏夫. 应用d-电子合金设计理论发展新型抗热腐蚀单晶镍基高温合金──Ⅲ.性能评价[J]. 金属学报, 1994, 30(2): 70-78.
[15] 王淑荷;郭建亭;李辉;孙超;谭明晖;赖万慧. YNi_5相及其对Ni_3Al合金性能的影响[J]. 金属学报, 1991, 27(6): 39-43.