Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 957-964    DOI: 10.3724/SP.J.1037.2012.00298
  论文 本期目录 | 过刊浏览 |
双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能
周小卫,  沈以赴, 顾冬冬
南京航空航天大学材料科学与技术学院, 南京 210016
MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION
ZHOU Xiaowei, SHEN Yifu, GU Dongdong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
引用本文:

周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION[J]. Acta Metall Sin, 2012, 48(8): 957-964.

全文: PDF(2750 KB)  
摘要: 在超声波振荡环境下, 用双脉冲电源在Watt-Ni电解液体系中电沉积了纳米晶Ni-CeO2复合镀层, 采用E-SEM, TEM 和XRD对镀层的形貌,微观结构及相组成进行分析; 通过循环氧化增重曲线和DSC曲线,比较研究了纯Ni镀层和Ni-CeO2复合镀层的高温抗氧化性能与热稳定性.结果表明, 超声波振荡能有效抑制纳米颗粒在镀液中的团聚;添加20 g/L CeO2, 可使Ni晶粒细化; 在873 K空气中退火处理2 h,复合镀层中的CeO2沿裂纹扩展间隙处析出并形成含有稀土元素的弥散相,可起到钉扎晶界和阻止热裂纹萌生的作用. 晶界作为Ni的快速扩散通道,促进稀土弥散相沿晶界析出并形成连续的致密氧化膜, 能有效抑制O与Ni原子在氧化膜中互扩散, 从而降低镀层的氧化速率. 通过测定不同升温速率下镀层DSC曲线的吸热峰对应温度, 由Kissinger方程求得Ni-CeO2复合镀层中Ni晶粒长大的表观活化能为243.3 kJ/mol,明显高于纯Ni的晶粒长大表观活化能(159.2 kJ/mol),吸热峰对应温度也较纯Ni镀层提高约130 K,因此Ni-CeO2复合镀层具有更高的热稳定性.
关键词 热稳定性 高温抗氧化性 双脉冲电沉积 活化能 Ni-CeO2    
Abstract:Ni–CeO2 nanocomposite coatings were successfully electrodeposited from a standard Watts–nickel solution by a pulsed current (PC) method under ultrasonic field (UF). The surface morphology, microstructural evolution and phase composition of both pure Ni and Ni–CeO2 coatings were characterized using E–SEM, TEM and XRD, respectively. The curves of oxidation kinetics and DSC analysis were employed to evaluate high temperature oxidation resistance and thermal stability of these coatings. The experimental results indicate that the effect of acoustic streaming produced by ultrasonic field can effectively promote the uniform distribution of CeO2 nanoparticles in electrolyte. The adding of 20 g/L CeO2 can make the Ni grains refined in the Ni–CeO2 coating. During annealing at 873 K for 2 h, a sort of precipitated phase named NiCe2O4 is formed along the edge of crack propagation in this coating to bond or heal up the existing grain–boundaries, and to make them far from the initiation and extension of thermal cracks. A large volume fraction of grain–boundaries act as diffusion channels to make NiCe2O4 precipitated and form a continuous and compact layer enriched with Ce alloying element leading to inhibition of mutual diffusion between O and Ni atoms in this layer and reduction of the oxidation rate. According to different endothermic peaks of DSC curves, the activation energy of crystallization calculated by Kissinger equation displays the better thermal stability of 243.3 kJ/mol for Ni grains in the Ni–CeO2 coating than 159.2 kJ/mol for pure Ni coating, and the corresponding endothermic peak is about 130 K higher than that of the latter.
Key wordsthermal stability    high temperature oxidation resistance    double–pulsed electro deposition    activation energy     Ni–CeO2
收稿日期: 2012-05-24     
ZTFLH: 

TG172.5

 
基金资助:

江苏省普通高校研究生科研创新计划资助项目CXLX12-0151

作者简介: 周小卫, 男, 1983年生, 博士生
[1] Li L, Huang S G, Xu L P, Biest O V D, Vleugels J. J Mater Sci Technol, 2001; 17: 529

[2] Abbas M I, Ibrahim K, Wu Z Y, Zhang J, Liu F Q, Qian H J. Acta Metall Sin (Engl Lett), 2001; 14: 539

[3] Ibrahim K, Wu Z Y, Zhang J, Abbas M I, Liu F Q, Qian H J. Acta Metall Sin (Engl Lett), 2001; 14: 511

[4] Sen R J, Bhattacharya S, Das S, Das K. J Alloys Compd, 2010; 489: 650

[5] Wang H X, Li Y G, Chu C L. Rare Met Mater Eng, 2011; 40: 316

 (王红星, 李迎光, 储成林. 稀有金属材料与工程, 2011; 40: 316)

[6] Qi E L, Man L Y, Wang S H, Wang J Q. Chin J Mater Res, 2011; 25: 219

(齐恩磊, 满丽莹, 王孙昊, 王介强. 材料研究学报, 2011; 25: 219)

[7] Yang Y L, Shen Y F, Chen J G, Wang Y D. Acta Metall Sin, 2007; 43: 883

(杨艳玲, 申勇峰, 陈进耿, 王沿东. 金属学报, 2007; 43: 883)

[8] Jin H M, Jiang S H, Zhang L N. J Rare Earths, 2009; 27: 109

[9] Ning Z H, He Y D. Acta Metall Sin, 2008; 44: 751

(宁朝辉, 何业东. 金属学报, 2008; 44: 751)

[10] Wang Y, Guo J B, Yu H Y, Li H Q, Sun D B. Chin J Nonferrous Met, 2007; 17: 1481

(王玉, 郭金彪, 俞宏英, 李辉勤, 孙冬柏. 中国有色金属学报, 2007; 17: 1481)

[11] Shen K, Wang M P, Guo M X, Li S M. Acta Metall Sin, 2009; 45: 597

(申坤, 汪明朴, 郭明星, 李树梅. 金属学报, 2009; 45: 597)

[12] Lu X D, Tian S G, Sun Z D. Corros Sci Prot Technol, 2011; 23: 298

(卢旭东, 田素贵, 孙振东. 腐蚀科学与防护技术, 2011; 23: 298)

[13] Prasad P, Vasudavan R, Sesdri S K. J Mater Sci Lett, 1992; 1: 1424

[14] Yu H, Dai P G. Heat Treat Met, 2005; 30: 16

(喻辉, 戴品强. 金属热处理, 2005; 30: 16)

[15] Klement U, Elsherik A M, Aust K T. Mater Sci Eng, 1995; 203: 177

[16] Xue Y J, Liu H B, Lan M M , Ku X C, Li J S. Tran Nonferrous Met Soc China, 2009; 19: 1599

[17] Zhang L, Schubert W D, Chen S, Hang C F, Huang B Y. Mater Sci Eng, 2004, A384: 395

[18] Gu D D, Shen Y F. Acta Metall Sin, 2007; 43: 968

(顾冬冬, 沈以赴. 金属学报, 2007; 43: 968)

[19] Zhou XW, Shen Y F, Zheng Y Y, Jin H M. J Rare Earths, 2011; 29: 883

[20] Sen R J, Das S, Das K. Mater Res Bull, 2012; 47: 478

[21] Prazybyldki K. J Electrochem Soc, 1987; 134: 3027

[22] Huang S G, Li L, Vleugels J, Biest O V D, Wang P L. J Mater Sci Technol, 2004; 20: 75

[23] Xue Y J, Liu H B, Lan M M, Cu X C, Li J S. Chin J Nonferrous Met, 2010; 20: 1599

(薛玉君, 刘红彬, 兰明明, 库祥臣, 李济顺. 中国有色金属学报, 2010; 20: 1599)

[24] Wang N, Wang Z R, Aust K T. Acta Mater, 1997; 45: 1655

[25] Qu N S, Zhu D, Chan K C. Scr Mater, 2006; 54: 1421

[26] Murugesan M, Obara H, Nakagawa Y, Yamasaki H, Kosaka S. J Cryst Growth, 2007; 304: 118

[27] Huang S G, Li L, Biest O V D, Vleugels J, Wang P L. J Mater Sci Technol, 2002; 18: 325

[28] Yong J H, Teng C W Z, Zhuang S Q Y L. Powder Metall, 1983; 30: 112

(永井宏, 藤川武志, 庄司启一郎. 粉体および粉末冶金, 1983; 30: 112)

[29] Ma X Q, Li T P. Corros Sci Prot Technol, 1993; 5: 255

(马信清, 李铁藩. 腐蚀科学与防护技术, 1993; 5: 255)

[30] Luthra K L, Briant C L. Oxid Met, 1986; 26: 397

[31] Wang N, Wang Z R, Aust K T. Acta Mater, 1997; 45: 1655

[32] Kissinger H. Anal Chem, 1957; 29: 1672

[33] Zhong Y H, Dai P Q, Dai C F. J Mater Eng, 2009; 4: 52

(钟远辉, 戴品强, 戴春福. 材料工程, 2009; 4: 52)

[34] Huang S G, Li L, Vleugels J, Biest O V D, Wang P L. J Mater Sci Technol, 2004; 20: 75

[35] Mihalache V, Pasuk I. Acta Mater, 2011; 59: 4875

[36] Xiong J, Chen Y, Qiu Y, Tao B, Qiu W F, Cui X, Li Y R. J Mater Sci Technol, 2007; 23: 457

[37] Wang H Y, Zuo D W, Wang M D, Shao J B. Acta Metall Sin, 2009; 45: 971

(王宏宇, 左敦稳, 王明娣, 邵建兵. 金属学报, 2009; 45: 971)
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[5] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[6] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[9] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[10] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[11] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[12] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[13] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[14] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[15] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.