Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 777-788    DOI: 10.11900/0412.1961.2022.00602
  研究论文 本期目录 | 过刊浏览 |
局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为
徐洋1,2, 柯黎明1(), 聂浩1, 夏春1(), 刘强1, 陈书锦2
1 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2 江苏科技大学 材料科学与工程学院 镇江 212003
Precipitation Behavior of Intermetallic Compounds at the Interface of Thick Plate Friction Stir Welded Al Alloy/Mg Alloy Joints Under Local Strong Cooling
XU Yang1,2, KE Liming1(), NIE Hao1, XIA Chun1(), LIU Qiang1, CHEN Shujin2
1 National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
Yang XU, Liming KE, Hao NIE, Chun XIA, Qiang LIU, Shujin CHEN. Precipitation Behavior of Intermetallic Compounds at the Interface of Thick Plate Friction Stir Welded Al Alloy/Mg Alloy Joints Under Local Strong Cooling[J]. Acta Metall Sin, 2024, 60(6): 777-788.

全文: PDF(4302 KB)   HTML
摘要: 

厚板铝合金/镁合金在搅拌摩擦焊(FSW)时接头界面沿板厚方向存在严重的温度分布差异问题,导致接头界面组织分布极不均匀,接头成形较为困难。减小接头界面沿板厚方向温差成为改善厚板铝合金/镁合金FSW接头成形的关键之一。本工作选取15 mm厚的5A06-H112铝合金和AZ31B-O镁合金板材进行异种材料FSW,采用液氮喷洒于焊缝上表面进行局部强冷,利用EBSD和TEM获得焊接接头物相分布和晶粒取向散布,研究了铝合金/镁合金接头搅拌区(SZ)两侧界面处金属间化合物(IMCs)的析出行为。结果表明,在空冷和液氮冷却2种条件下SZ的铝合金侧主要析出Al3Mg2相;镁合金侧主要析出Al12Mg17相,且在上部界面处与Mg发生了共晶反应;焊缝表面局部强冷,降低了接头各位置的峰值温度和高温停留时间,有效抑制了IMCs的析出和低熔点共晶的形成。不施加表面冷却时,铝合金侧界面上部和中部附近的SZ中主要析出Al3Mg2相,底部SZ中则为细小的等轴铝合金晶粒;镁合金侧界面上部的SZ中则主要析出了Al12Mg17相,并与Mg形成低熔点共晶,且在共晶区与SZ中的铝合金之间析出Al3Mg2薄层,中部和下部SZ与镁合金之间析出了界线分明、由Al3Mg2层和Al12Mg17层组成的IMCs叠层,且中部的IMCs叠层总厚度远大于峰值温度较低的底部处IMCs叠层厚度,其中Al3Mg2层厚度减薄更为明显。当在焊缝表面施加液氮冷却时,铝合金侧界面上部的SZ中除了析出Al3Mg2相外,还有少部分Al12Mg17和铝合金晶粒,而界面中部和底部SZ中均为等轴状的铝合金晶粒;在镁合金侧界面处,各部位IMCs析出行为与不施加表面冷却时相似,但界面上部析出的Mg + Al12Mg17共晶层和Al3Mg2层、中部和下部SZ界面IMCs叠层总厚度明显减小,Al3Mg2薄层厚度降低更为显著。应变速率对IMCs的析出有显著影响,表现为界面层实际厚度远大于由扩散定律计算的理论厚度。

关键词 搅拌摩擦焊厚板铝合金/镁合金接头金属间化合物局部强冷    
Abstract

Al alloy and Mg alloy are not only the lightest metal structural materials, but also have the advantages of high specific strength and damping performance, which are very attractive for automobile, high-speed rail and aerospace. To meet the requirements of structural lightweight and different service environments, it is usually necessary to join Al alloy and Mg alloy into a complete structure. As a new solid-state joining method, friction stir welding (FSW) has obvious advantages in the field of Al alloy/Mg alloy hybrid structure because its welding temperature is lower than the melting point of base metal. However, the formation temperature of Al alloy/Mg alloy intermetallic compounds (IMCs) is lower than the melting point of Al and Mg, if the thickness of base metal exceeds 10 mm, the Al alloy/Mg alloy FSW is still very difficult because of the formation of IMCs in the weld. To obtain some control methods of the formation of IMCs, 5A06-H112 Al alloy and AZ31B-O Mg alloy plates with a thickness of 15 mm were used for the Al alloy/Mg alloy FSW. Liquid nitrogen was sprayed near the rear of the stirring head to locally cool the upper surface of the weld. EBSD and TEM instrument were used to obtain the phase distribution and grain orientation spread at different positions of the welded joint. The precipitation behavior of IMCs at the interfaces on both sides of the stirring zone (SZ) of Al alloy/Mg alloy joints under ambient temperatures and liquid nitrogen cooling conditions was studied. The results indicate that Al3Mg2 mainly precipitates on the Al alloy side of SZ; the main precipitation on the Mg alloy side is Al12Mg17, and it was generated eutectic reactions with Mg at the upper interface; liquid nitrogen cooling on the surface can reduce the peak temperature and high-temperature residence time at various positions of the joint, and has a significant inhibitory effect on the precipitation of IMCs and the formation of low melting point eutectic. When surface cooling is not applied, almost only Al3Mg2 phase is precipitated in the SZ at the upper and middle parts of near the interface of Al alloy side, and at the bottom, only fine equiaxed Al grains are observed in the SZ. At the side of magnesium alloy, Al12Mg17 phase is mainly precipitated at the upper interface of SZ and it forms low melting point eutectic with Mg, and at the same time, a thin layer of Al3Mg2 is precipitated between the eutectic zone and the Al alloy in SZ. Two layers of Al3Mg2 and Al12Mg17, which are sticked close to each other and there is a distinct boundary layer between them, is precipitated between SZ and the Mg alloy at the middle and lower interfaces, and the total thickness of the IMCs layer at the middle interface is much greater than the IMCs layer thickness at the bottom interface, at here the peak temperature is lower, the thickness of the Al3Mg2 layer is decreased more significantly. When liquid nitrogen cooling is applied to the weld surface, in addition to Al3Mg2 phase precipitation, there are also a small number of Al12Mg17 and Al grains in the SZ at the upper part of the interface of Al alloy side, while equiaxed Al grains are present in the SZ at the middle and bottom parts of the interface. At interface close to the Mg alloy side, the precipitation behavior of IMCs in each parts is similar to that without surface cooling, but the total thickness of the Mg + Al12Mg17 eutectic layer and Al3Mg2 layer precipitated at the upper part of the interface, and the thickness of the IMCs layer at the middle and lower SZ interfaces are significantly decreased, and the thickness of the Al3Mg2 thin layer decreases more significantly. The strain rate has a significant impact on the precipitation of IMCs, and it is confirmed by that, the actual thickness of the interface layer is much greater than the theoretical thickness calculated by the diffusion law.

Key wordsfriction stir welding    thick plate Al alloy/Mg alloy joint    intermetallic compound    local strong cooling
收稿日期: 2022-11-24     
ZTFLH:  TG42  
基金资助:国家自然科学基金项目(51874179;52275339)
通讯作者: 柯黎明,limingke@nchu.edu.cn,主要从事轻合金特种焊接技术研究;
夏 春,30019@nchu.edu.cn,主要从事金属基复合材料制备及先进连接技术研究;
Corresponding author: KE Liming, professor, Tel: 13576979156, E-mail: limingke@nchu.edu.cn;
XIA Chun, associate professor, Tel: 13870870701, E-mail: 30019@nchu.edu.cn
作者简介: 徐 洋,男,1991年生,博士
MaterialAlZnMnSiCuFeNiMg
5A06-H112Bal.≤ 0.20.60.40.1≤ 0.40.16.2
AZ31B-O3.01.20.2-1≤ 0.1≤ 0.05≤ 0.005≤ 0.005Bal.
表1  5A06-H112铝合金和AZ31B-O镁合金的化学成分 (mass fraction / %)
图1  表面液氮冷却条件下5A06-H112 /AZ31B-O搅拌摩擦焊(FSW)示意图
图2  5A06-H112/AZ31B-O FSW接头界面附近热电偶放置位置示意图
图3  空冷和表面液氮冷却时5A06-H112/AZ31B-O FSW接头界面附近热循环曲线
Cooling mediumUpperBottom
Tp / oCΔt / sTp / oCΔt / s
Air420.288380.672
Liquid nitrogen401.976372.470
表2  空冷和表面液氮冷却时AZ31B-O镁合金侧界面上部和底部峰值温度和高温停留时间
图4  空冷和表面液氮冷却时5A06-H112/AZ31B-O FSW接头的宏观形貌
图5  空冷和表面液氮冷却时5A06-H112/AZ31B-O FSW接头铝合金侧界面上部物相分布(PD)、晶粒取向散布(GOS)和右侧SZ晶粒尺寸分布
图6  空冷和表面液氮冷却时5A06-H112 /AZ31B-O FSW接头铝合金侧界面中部PD、GOS和右侧SZ晶粒尺寸分布
图7  空冷和液氮冷却时5A06-H112/AZ31B-O FSW接头铝合金侧界面底部PD、GOS和右侧SZ晶粒尺寸分布
图8  空冷和表面液氮冷却时5A06-H112 /AZ31B-O FSW接头镁合金侧界面上部PD和GOS
图9  空冷和表面液氮冷却时5A06-H112 /AZ31B-O FSW接头镁合金侧界面中部PD和GOS
图10  空冷和表面液氮冷却时5A06-H112/AZ31B-O FSW接头镁合金侧界面底部PD和GOS
图11  表面液氮冷却时5A06-H112/AZ31B-O FSW接头镁合金侧界面底部IMCs层的HADDF像、元素分布和SAED花样
Cooling mediumPosition

re

mm

Le

mm

ε˙

s-1

Tp

oC

AirUpper4.73.030.7425.5
Middle4.67.512.0403.6
Bottom3.915.05.1384.6
Liquid nitrogenUpper5.43.035.3409.8
Middle5.17.513.3396.8
Bottom4.015.05.2377.8
表3  空冷和表面液氮冷却时5A06-H112/AZ31B-O FSW接头铝合金侧界面沿板厚方向的应变速率和峰值温度
1 Chang C I, Lee C J, Huang J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys [J]. Scr. Mater., 2004, 51: 509
2 Zuo Y, Chang Y A. Thermodynamic calculation of the Al-Mg phase diagram [J]. Calphad, 1993, 17: 161
3 Liu P, Li Y J, Geng H R, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials [J]. Mater. Lett., 2007, 61: 1288
4 Liu L M, Wang H Y. The effect of the adhesive on the microcracks in the laser welded bonding Mg to Al joint [J]. Mater. Sci. Eng., 2009, A507: 22
5 Chi C T, Chao C G, Liu T F, et al. Aluminum element effect for electron beam welding of similar and dissimilar magnesium-aluminum-zinc alloys [J]. Scr. Mater., 2007, 56: 733
6 Thomas W M, Johnson K I, Wiesner C S. Friction stir welding-recent developments in tool and process technologies [J]. Adv. Eng. Mater., 2003, 5: 485
7 Shehabeldeen T A, Yin Y J, Ji X Y, et al. Investigation of the microstructure, mechanical properties and fracture mechanisms of dissimilar friction stir welded aluminium/titanium joints [J]. J. Mater. Res. Technol., 2021, 11: 507
8 Prasad B L, Neelaiah G, Krishna M G, et al. Joining of AZ91 Mg alloy and Al6063 alloy sheets by friction stir welding [J]. J. Magnes. Alloy., 2018, 6: 71
9 Fu X S, Chen K, Zhang Z, et al. Interfacial microstructure and mechanical property in friction stir welded Mg/Al joints under low rotation speed [J]. Sci. Technol. Weld. Joining, 2021, 26: 470
10 Kwon Y J, Shigematsu I, Saito N. Dissimilar friction stir welding between magnesium and aluminum alloys [J]. Mater. Lett., 2008, 62: 3827
11 Fu B L, Qin G L, Li F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy [J]. J. Mater. Process. Technol., 2015, 218: 38
12 Shi H, Chen K, Liang Z Y, et al. Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints [J]. J. Mater. Sci. Technol., 2017, 33: 359
doi: 10.1016/j.jmst.2016.05.006
13 Sato Y S, Park S H C, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scr. Mater., 2004, 50: 1233
14 Wang D, Liu J, Xiao B L, et al. Mg/Al reaction and mechanical properties of Al alloy/Mg alloy friction stir welding joints [J]. Acta Metall. Sin., 2010, 46: 589
doi: 10.3724/SP.J.1037.2009.00802
14 王 东, 刘 杰, 肖伯律 等. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能 [J]. 金属学报, 2010, 46: 589
15 Li B, Shen Y F, Hu W Y. Friction-stir welded defects and repairing weld process of thick aluminum plates with telescopic stir-pin [J]. Chin. J. Nonferrous Met., 2012, 22: 62
15 李 博, 沈以赴, 胡伟叶. 伸缩式搅拌头厚铝板搅拌摩擦焊缺陷及其补焊工艺 [J]. 中国有色金属学报, 2012, 22: 62
16 Pourahmad P, Abbasi M. Materials flow and phase transformation in friction stir welding of Al 6013/Mg [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1253
17 McLean A A, Powell G L F, Brown I H, et al. Friction stir welding of magnesium alloy AZ31B to aluminium alloy 5083 [J]. Sci. Technol. Weld. Joining, 2003, 8: 462
18 Xu Y, Ke L M, Ouyang S, et al. Precipitation behavior of intermetallic compounds and their effect on mechanical properties of thick plate friction stir welded Al/Mg joint [J]. J. Manuf. Processes, 2021, 64: 1059
19 Xu Y, Ke L M, Mao Y Q, et al. Interfacial microstructure evolution of thick plate Al/Mg FSW: Effect of pin size [J]. Mater. Charact., 2021, 174: 111022
20 Abdollahzadeh A, Shokuhfar A, Cabrera J M, et al. The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer [J]. J. Manuf. Processes, 2018, 34: 18
21 Lv X Q, Wu C S, Sun Z. Effects of ultrasonic vibration on material flow and thermal cycles in friction stir welding of dissimilar Al/Mg alloys [J]. Metall. Mater. Trans., 2022, 53A: 1572
22 Zhao J J, Wu C S, Su H. Ultrasonic effect on thickness variations of intermetallic compound layers in friction stir welding of aluminium/magnesium alloys [J]. J. Manuf. Processes, 2021, 62: 388
23 Mofid M A, Abdollah-Zadeh A, Ghaini F M. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy [J]. Mater. Des., 2012, 36: 161
24 Mofid M A, Abdollah-Zadeh A, Gür C H. Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen [J]. Int. J. Adv. Manuf. Technol., 2014, 71: 1493
25 Zhao Y, Jiang S, Yang S F, et al. Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 673
26 Ding Y L, Ju D Y. Microstructure and properties of diffusion bonded Mg/Al joints [J]. Key Eng. Mater., 2019: 804: 29
27 Ding Y L, Wang J G, Zhao M, et al. Effect of annealing temperature on joints of diffusion bonded Mg/Al alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 251
28 Chen W, Wang W X, Liu Z P, et al. Improvement in tensile strength of Mg/Al alloy dissimilar friction stir welding joints by reducing intermetallic compounds [J]. J. Alloys Compd., 2021, 861: 157942
29 Xu Y, Ke L M, Mao Y Q, et al. Formation investigation of intermetallic compounds of thick plate Al/Mg alloys joint by friction stir welding [J]. Materials, 2019, 12: 2661
30 Chen S J, Li X X, Jiang X Q, et al. The effect of microstructure on the mechanical properties of friction stir welded 5A06 Al alloy [J]. Mater. Sci. Eng., 2018, A735: 382
31 Raturi M, Bhattacharya A. Microstructure and texture correlation of secondary heating assisted dissimilar friction stir welds of aluminum alloys [J]. Mater. Sci. Eng., 2021, A825: 141891
32 Firouzdor V, Kou S. Al-to-Mg friction stir welding: Effect of material position, travel speed, and rotation speed [J]. Metall. Mater. Trans., 2010, 41A: 2914
33 Singh A K, Sahlot P, Paliwal M, et al. Heat transfer modeling of dissimilar FSW of Al 6061/AZ31 using experimentally measured thermo-physical properties [J]. Int. J. Adv. Manuf. Technol., 2019, 105: 771
34 Yu J Q, Zhou W B, Zhao G Q. Influence of strain, temperature, and strain rate on interfacial structure and strength of AZ31BMg/6063Al formed by plastic deformation bonding [J]. J. Manuf. Processes, 2021, 65: 299
35 Gotawala N, Shrivastava A. Investigation of interface microstructure and mechanical properties of rotatory friction welded dissimilar aluminum-steel joints [J]. Mater. Sci. Eng., 2021, A825: 141900
36 Ma Z Y, Shang Q, Ni D R, et al. Friction stir welding of magnesium alloys: A review [J]. Acta Metall. Sin., 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
36 马宗义, 商 乔, 倪丁瑞 等. 镁合金搅拌摩擦焊接的研究现状与展望 [J]. 金属学报, 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
37 Watanabe H, Tsutsui H, Mukai T, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization [J]. Mater. Trans., 2001, 42: 1200
38 Yamamoto N, Liao J S, Watanabe S, et al. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy [J]. Mater. Trans., 2009, 50: 2833
39 Liu X T, Cui J Z, Guo Y H, et al. Phase formation and growth in Al-Mg couple with an electromagnetic field [J]. Mater. Lett., 2004, 58: 1520
40 Xu Y, Ke L M, Mao Y Q, et al. An innovative joint interface design for reducing intermetallic compounds and improving joint strength of thick plate friction stir welded Al/Mg joints [J]. J. Magnes. Alloy., 2023, 11: 3151
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[6] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[7] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[8] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[9] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[10] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[11] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[12] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[13] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[14] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[15] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.