Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1068-1076    DOI: 10.11900/0412.1961.2017.00423
  本期目录 | 过刊浏览 |
TA1/Cu/X65复合板焊接接头微观组织及力学性能
张敏(), 慕二龙, 王晓伟, 韩挺, 罗海龙
西安理工大学材料科学与工程学院 西安 710048
Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets
Min ZHANG(), Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. Acta Metall Sin, 2018, 54(7): 1068-1076.

全文: PDF(7225 KB)   HTML
摘要: 

对TA1/Cu/X65三层复合板(复层TA1厚2 mm,中间层Cu厚1 mm,基层X65管线钢厚12 mm)进行了钨极氩弧焊(TIG)对接焊,设计并制备了过渡层焊接材料Cu-Ag-Mo-Nb药芯焊丝,从而对焊接接头性能进行有效冶金调控。通过SEM、EDS、XRD、TEM对接头组织特征、界面元素分布进行了分析鉴定,通过拉伸和显微硬度实验测试了接头的力学性能。结果表明,焊缝各层填充金属之间冶金结合良好,且有明显的熔合线和过渡带,其中,在Ti焊缝和过渡层焊缝之间存在宽度大约为150 μm的Ti-Cu冶金反应区,过渡层焊缝和钢焊缝之间的组织主要是铁基固溶体和铜基固溶体。中间Cu夹层和Cu-Ag-Mo-Nb药芯焊丝的使用,抑制了Ti-Fe硬脆金属间化合物的产生,形成了塑性相对较好的铜基固溶体和Ti-Cu、Ti-Ag等金属间化合物。接头的平均抗拉强度为507 MPa,主要由X65层贡献。焊缝硬度在各过渡界面处均发生突变,其中在Cu-Ag-Mo-Nb、ERTi-1焊缝处硬度可高达447和507 HV100,对接头塑韧性有很大影响。

关键词 复合板钨极氩弧焊过渡带固溶体金属间化合物    
Abstract

Titanium and its alloys with fine corrosion resistance and specific tenacity are widely used in the fields of astronautics, chemical industry and so on. While the pipeline steels with low price and good mechanical properties are always used in petroleum industry. For now, composite panels are widely used in petrochemical industry, aerospace engineering and other fields, which can combine the respective features of the dissimilar materials together so as to meet the special requirements and save a lot of rare and precious metals. Previous studies have showed that the joining of titanium and steel suffered from two major challenges: one was the emergence of continuous distributed intermetallics of TiFe and TiFe2 in the weld, which could cause brittle fracture with low strength; the other was the occurrence of residual stresses that were caused by the great differences in thermal properties between titanium and steel. This work is aimed to join the explosion-bonded TA1/Cu/X65 trimetallic sheets (titanium flyer plate with thickness 2 mm, copper intermediate plate 1 mm, and X65 base plate 12 mm) with Cu-based flux-cored wires by the tungsten inert gas (TIG) welding. The microstructure and mechanical properties of welded joint was characterized by using SEM, EDS, TEM, XRD and tensile and microhardness tests. The results indicated that the filler metals for each weld layer have obvious zoning by using solid solution phases and intermetallic compounds. There was about 150 μm width Ti-Cu reaction zone between the Ti weld and transition layer weld. The microstructures of Cu-Ag-Mo-Nb/ER50-6 transition interface were composed of Fe-based and Cu-based solid solution. The intermediate copper played an important role in reducing the high temperature residence time of welded joints so as to reduce the interdiffusion of Ti, Fe element. Consequently, the hard-brittle Ti-Fe intermetallic compounds were partly replaced by Cu-based solid solution and Ti-Cu, Ti-Ag intermetallic compounds with relatively good ductility and toughness. The average tensile strength of the butt joints is 507 MPa at room temperature, mainly of that of X65 was obtained. ERTi-1 weld metal exhibited higher hardness than Cu-Ag-Mo-Nb weld metal, and their microhardness values were 507 and 447 HV100, respectively. In addition, the microhardness in reaction zone presented a slightly drop. The lowest values occurred in ER50-6 weld metal.

Key wordscomposite panel    TIG welding    transitional zone    solid solution    intermetallic compound
收稿日期: 2017-10-10     
ZTFLH:  TG457.19  
基金资助:国家自然科学基金项目No.51274162,陕西省教育厅重点实验室项目No.15JS082及陕西省教育厅服务地方专项计划项目No.16JF021
作者简介:

作者简介 张 敏,男,1967年生,教授,博士

图1  焊接坡口示意图
Material C Mn Si Ti Cu Fe O N H S P
TA1 0.015 - - Bal. - 0.023 0.07 0.005 0.001 0.005 0.005
T2 (copper) - - - - Bal. 0.005 - - - 0.005 0.005
X65 0.09 1.32 0.22 - - Bal. - - - 0.005 0.019
表1  实验材料化学成分
Welding material D / mm I / A U / V v / (mmmin-1) Q / (Lmin-1)
ER50-6 1.2 100~120 16~18 150~200 15~20
180~200 20~23 250~350 15~20
Cu-Ag-Mo-Nb 1.2 90~110 16~18 150~250 15~20
ERTi-1 1.2 100~120 14~16 90~110 15~20
表2  TA1/Cu/X65复合板焊接参数
图2  焊接接头微观组织
图3  TA1/Cu/X65三层复合板焊缝横截面XRD谱
Point Ti Cu Fe Ag Mo Nb Possible phase
A 86.44 11.19 1.22 0.72 0.19 0.25 β-Ti(s, s)+Ti2Cu
B 51.90 46.73 - 0.98 0.21 0.18 TiCu
C 84.49 13.44 1.10 0.65 0.32 - β-Ti(s, s)+Ti2Cu
D 67.29 31.88 0.35 0.32 0.05 0.10 Ti2Cu
E 67.29 33.22 0.64 0.42 0.21 0.08 Ti2Cu
F 83.79 13.58 2.10 0.32 0.11 0.10 β-Ti(s, s)+Ti2Cu
G 63.04 30.04 1.62 4.13 0.03 1.14 Ti2Cu+TiCu
H 60.62 32.99 3.85 1.24 1.26 0.04 Ti2Cu
I 39.12 50.01 10.32 0.32 0.13 0.10 Cu0.8Fe0.2Ti
J 7.53 87.41 0.52 4.29 0.16 0.08 Cu(s, s)+TiAg
K 46.75 45.08 4.20 2.31 1.02 0.64 TiCu
L 16.21 82.14 0.62 0.40 0.40 0.23 Cu(s, s)+TiCu4
M 11.19 86.44 1.22 0.72 0.19 0.25 Cu(s, s)+TiCu4
N 14.89 6.94 76.14 0.49 1.14 0.39 Fe(s, s)+TiFe
O 11.74 11.95 66.78 4.21 2.89 2.43 Fe(s, s)+TiCu
P 37.17 48.77 11.43 1.11 0.04 1.49 Cu0.8Fe0.2Ti
Q 1.02 92.36 6.50 0.08 - 0.04 Cu(s, s)
R 15.58 9.21 68.52 6.52 0.12 0.05 Fe(s, s)+TiCu
S 74.32 24.44 1.02 0.13 0.05 0.04 β-Ti(s, s)+Ti2Cu
T 93.99 5.33 0.38 0.21 0.04 0.06 β-Ti(s, s)
表3  图2中A~T点的化学成分
图4  焊缝各区域TEM选区电子衍射分析结果
图5  焊缝应力-应变曲线及拉伸断裂试样
图6  试样拉伸断口形貌
图7  TA1/Cu/X65三层复合板焊接接头显微硬度分布
[1] Banerjee D, Williams J C.Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[2] Chu Q L, Zhang M, Li J H, et al.Intermetallics in CP-Ti/X65 bimetallic sheets filled with Cu-based flux-cored wires[J]. Mater. Des., 2016, 90: 299
[3] Lee J G, Hong S J, Lee M K, et al.High strength bonding of titanium to stainless steel using an Ag interlayer[J]. J. Nucl. Mater., 2009, 395: 145
[4] Zhang Y, Sun D Q, Gu X Y, et al.A hybrid joint based on two kinds of bonding mechanisms for titanium alloy and stainless steel by pulsed laser welding[J]. Mater. Lett., 2016, 185: 152
[5] Kahraman N, Gülen? B, Findik F.Joining of titanium/stainless steel by explosive welding and effect on interface[J]. J. Mater. Process. Technol., 2005, 169: 127
[6] Wang T, Zhang B G, Chen G Q, et al.Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1829
[7] Chu Q L, Zhang M, Li J H, et al.Joining of CP-Ti/Q345 sheets by Cu-based filler metal and effect on interface[J]. J. Mater. Process. Technol., 2015, 225: 67
[8] Van Beek J A, Kodentsov A A, Van loo F J J. Phase equilibria in the Cu-Fe-Ti system at 1123 K[J]. J. Alloys Compd., 1995, 217: 97
[9] Si C Y, Zhou Z F, Zhang Y S.Welding Metallographic Atlas [M]. Beijing: China Machine Press, 1987: 404(斯重遥, 周振丰, 张延生. 焊接金相图谱 [M]. 北京: 机械工业出版社, 1987: 404)
[10] Guo Q W, Wang G S, Guo G C.Common Nonferrous Metal Binary Alloy Phase Portfolio [M]. Beijing: Chemical Industry Press, 2010: 269(郭青蔚, 王桂生, 郭庚辰. 常用有色金属二元合金相图集 [M]. 北京: 化学工业出版社, 2010: 269)
[11] Tomashchuk I, Sallamand P, Jouvard J M.Multiphysical modeling of dissimilar welding via interlayer[J]. J. Mater. Process. Technol., 2011, 211: 1796
[12] Shanmugarajan B, Padmanabham G.Fusion welding studies using laser on Ti-SS dissimilar combination[J]. Opt. Lasers Eng., 2012, 50: 1621
[13] Chen G Q, Zhang B G, Liu W, et al.Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2416
[14] Lee M K, Lee J G, Choi Y H, et al.Interlayer engineering for dissimilar bonding of titanium to stainless steel[J]. Mater. Lett., 2010, 64: 1105
[15] Wang T, Zhang B G, Chen G Q, et al.High strength electron beam welded titanium-stainless steel joint with V/Cu based composite filler metals[J]. Vacuum, 2013, 94: 41
[16] Shen Q, Xiang H Y, Luo G Q, et al.Microstructure and mechanical properties of TC4/oxygen-free copper joint with silver interlayer prepared by diffusion bonding[J]. Mater. Sci. Eng., 2014, A596: 45
[17] Lee M K, Park J J, Lee G J, et al.Corrosion of Ti-STS dissimilar joints brazed by a Ag interlayer and Ag-Cu-(Pd) alloy fillers[J]. J. Nucl. Mater., 2011, 409: 183
[18] Shiue R K, Wu S K, Shiue J Y.Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s)[J]. Mater. Sci. Eng., 2008, A488: 186
[19] Tomashchuk I, Sallamand P, Andrzejewski H, et al.The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd: YAG laser joints[J]. Intermetallics, 2011, 19: 1466
[20] Bi Z Y, Yang J, Liu H Z, et al.Investigation on the welding process and microstructure and mechanical property of butt joints of TA1/X65 clad plates[J]. Acta Metall. Sin., 2016, 52: 1017(毕宗岳, 杨军, 刘海璋等. TA1/X65复合板焊接工艺及焊缝组织和性能研究[J]. 金属学报, 2016, 52: 1017)
[21] Kundu S, Chatterjee S.Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Mater. Sci. Eng., 2006, A425: 107
[22] Ning J, Zhang L J, Jiang G C, et al.Narrow gap multi-pass laser butt welding of explosion welded CP-Ti/Q235B bimetallic sheet by using a copper interlayer[J]. J. Alloys Compd., 2017, 701: 587
[23] Mallesham P, Gokhale A A, Murti V S R. Nature of the interface between AA7072 alloy explosively clad to AA8090 aluminium alloy[J]. J. Mater Sci., 2003, 38: 1869
[24] Dharmendra C, Rao K P, Wilden J, et al.Study on laser welding-brazing of zinc coated steel to aluminum alloy with a zinc based filler[J]. Mater. Sci. Eng., 2011, A528: 1497
[25] Lin S B, Song J L, Yang C L, et al.Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal[J]. Mater. Des., 2010, 31: 2637
[26] Ishida K, Gao Y, Nagatsuka K, et al.Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel[J]. J. Alloys Compd., 2015, 630: 172
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[4] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[5] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[6] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[7] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[8] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54(2): 293-300.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.