|
|
不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟 |
孟子凯1,2, 孟智超1,2, 高长源3, 郭辉1,2, 陈汉森3, 陈刘涛3, 徐东生1,2( ), 杨锐1,2 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 中广核研究院有限公司 深圳 518031 |
|
Molecular Dynamics Simulation of Creep Mechanism in Nanocrystalline α-Zirconium Under Various Conditions |
MENG Zikai1,2, MENG Zhichao1,2, GAO Changyuan3, GUO Hui1,2, CHEN Hansen3, CHEN Liutao3, XU Dongsheng1,2( ), YANG Rui1,2 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China |
引用本文:
孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
Zikai MENG,
Zhichao MENG,
Changyuan GAO,
Hui GUO,
Hansen CHEN,
Liutao CHEN,
Dongsheng XU,
Rui YANG.
Molecular Dynamics Simulation of Creep Mechanism in Nanocrystalline α-Zirconium Under Various Conditions[J]. Acta Metall Sin, 2024, 60(5): 699-712.
1 |
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
|
2 |
Kim K T. Evolutionary developments of advanced PWR nuclear fuels and cladding materials[J]. Nucl. Eng. Des., 2013, 263: 59
doi: 10.1016/j.nucengdes.2013.04.013
|
3 |
Yu J N. Material Radiation Effects[M]. Beijing: Chemical Industry Press, 2007: 1
|
3 |
郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 1
|
4 |
Azevedo C R F. A review on neutron-irradiation-induced hardening of metallic components[J]. Eng. Fail. Anal., 2011, 18: 1921
doi: 10.1016/j.engfailanal.2011.06.008
|
5 |
Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys[M]. 2nd Ed., New York: Springer, 2017: 167
|
6 |
Wan F R. Radiation Damage of Metallic Materials[M]. Beijing: Science Press, 1993: 1
|
6 |
万发荣. 金属材料的辐照损伤[M]. 北京: 科学出版社, 1993: 1
|
7 |
Tavassoli A A F. Present limits and improvements of structural materials for fusion reactors—A review[J]. J. Nucl. Mater., 2002, 302: 73
doi: 10.1016/S0022-3115(02)00794-8
|
8 |
Guguloth K, Mitra R, Chowdhury S G, et al. Mechanism of creep deformation with evolution of microstructure and texture of Zr-2.5Nb alloy[J]. Mater. Sci. Eng., 2018, A721: 286
|
9 |
Guguloth K, Ghosh M, Swaminathan J, et al. Tensile creep and rupture behavior along with evolution of microstructure in a Zr-2.5Nb alloy[J]. Mater. Sci. Eng., 2020, A791: 139681
|
10 |
Kozar R W, Jaworski A W, Webb T W, et al. In situ monitored in-pile creep testing of zirconium alloys[J]. J. Nucl. Mater., 2014, 444: 14
doi: 10.1016/j.jnucmat.2013.08.043
|
11 |
Nichols F A. Theory of the creep of zircaloy during neutron irradiation[J]. J. Nucl. Mater., 1969, 30: 249
doi: 10.1016/0022-3115(69)90241-4
|
12 |
Wang B Z, Ding S R, Chen L, et al. Effect of irradiation creep on hydrogen-pick-up induced multi-field coupling behavior in zircaloy cladding tube[J]. At. Energy Sci. Technol., 2017, 51: 1625
|
12 |
汪秉忠, 丁淑蓉, 陈 亮 等. 辐照蠕变对锆合金包壳管吸氢所致多场耦合行为的影响[J]. 原子能科学技术, 2017, 51: 1625
doi: 10.7538/yzk.2017.51.09.1625
|
13 |
Xu D S, Chang J P, Li J, et al. Dislocation slip or deformation twinning: Confining pressure makes a difference[J]. Mater. Sci. Eng., 2004, A387-389: 840
|
14 |
Xu D S, Wang H, Yang R, et al. Molecular dynamics investigation of deformation twinning in γ-TiAl sheared along the pseudo-twinning direction[J]. Acta Mater., 2008, 56: 1065
doi: 10.1016/j.actamat.2007.11.007
|
15 |
Wang H, Xu D S, Yang R, et al. The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl[J]. Acta Mater., 2009, 57: 3725
doi: 10.1016/j.actamat.2009.04.019
|
16 |
Wang H, Bao Q L, Zhou G, et al. Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium[J]. J. Mater. Res., 2019, 34: 1608
doi: 10.1557/jmr.2019.125
|
17 |
Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
|
18 |
Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Comput. Phys. Commun., 2022, 271: 108171
doi: 10.1016/j.cpc.2021.108171
|
19 |
Mendelev M I, Ackland G J. Development of an interatomic potential for the simulation of phase transformations in zirconium[J]. Philos. Mag. Lett., 2007, 87: 349
doi: 10.1080/09500830701191393
|
20 |
Zhou W, Tian J T, Feng Q J, et al. Molecular dynamics simulations of high-energy displacement cascades in hcp-Zr[J]. J. Nucl. Mater., 2018, 508: 540
doi: 10.1016/j.jnucmat.2018.06.002
|
21 |
Mendelev M I, Bokstein B S. Molecular dynamics study of self-diffusion in Zr[J]. Philos. Mag., 2010, 90: 637
doi: 10.1080/14786430903219020
|
22 |
Mendelev M I, Kramer M J, Ott R T, et al. Molecular dynamics simulation of diffusion in supercooled Cu-Zr alloys[J]. Philos. Mag., 2009, 89: 109
doi: 10.1080/14786430802570648
|
23 |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
24 |
Liu X Y, Zhao X C, Yang X R, et al. Progress in research on creep behavior of ultrafine/nano-grained metallic materials[J]. Chin. J. Rare Met., 2016, 40: 1282
|
24 |
刘晓燕, 赵西成, 杨西荣 等. 超细晶/纳米晶金属材料的蠕变行为研究进展[J]. 稀有金属, 2016, 40: 1282
|
25 |
Wang Y J, Ishii A, Ogata S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics[J]. Mater. Trans., 2012, 53: 156
doi: 10.2320/matertrans.MD201122
|
26 |
Blum W, Eisenlohr P. Dislocation mechanics of creep[J]. Mater. Sci. Eng., 2009, A510-511: 7
|
27 |
Chen Y C. Fundamental problems of diffusional creep theory[J]. Chin. J. Rare Met., 2012, 36: 171
|
27 |
陈永翀. 扩散蠕变理论的基础问题研究[J]. 稀有金属, 2012, 36: 171
|
28 |
Morris D G, Gutierrez-Urrutia I, Muñoz-Morris M A. The high-temperature creep behaviour of an Fe-Al-Zr alloy strengthened by intermetallic precipitates[J]. Scr. Mater., 2007, 57: 449
doi: 10.1016/j.scriptamat.2007.05.038
|
29 |
Zhu Z. Creep behavior of ultra-fine grained commercial purity zirconium at room temperature[D]. Xi'an: Xi'an University of Architecture and Technology, 2018
|
29 |
朱 振. 复合细化超细晶工业纯锆的室温蠕变行为研究[D]. 西安: 西安建筑科技大学, 2018
|
30 |
Zhu Y T, Langdon T G. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials[J]. Mater. Sci. Eng., 2005, A409: 234
|
31 |
Shan Z W, Stach E A, Wiezorek J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel[J]. Science, 2004, 305: 654
pmid: 15286368
|
32 |
Zhu Y T, Huang J Y, Gubicza J, et al. Nanostructures in Ti processed by severe plastic deformation[J]. J. Mater. Res., 2003, 18: 1908
doi: 10.1557/JMR.2003.0267
|
33 |
Liu X Y, Zhang Q Q, Zhao X C, et al. Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP[J]. Mater. Sci. Eng., 2016, A676: 73
|
34 |
Yang X H, Li J, Wang P. Grain boundary migration in nanocrystalline Ni under constant shear strains and its mechanism[J]. Comput. Mater. Sci., 2020, 176: 109530
doi: 10.1016/j.commatsci.2020.109530
|
35 |
Yamakov V, Wolf D, Salazar M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater., 2001, 49: 2713
doi: 10.1016/S1359-6454(01)00167-7
|
36 |
Tjong S C, Chen H. Nanocrystalline materials and coatings[J]. Mater. Sci. Eng., 2004, R45: 1
|
37 |
Haslam A J, Moldovan D, Yamakov V, et al. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation[J]. Acta Mater., 2003, 51: 2097
doi: 10.1016/S1359-6454(03)00011-9
|
38 |
Jin M, Minor A M, Stach E A, et al. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature[J]. Acta Mater., 2004, 52: 5381
doi: 10.1016/j.actamat.2004.07.044
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|