Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 699-712    DOI: 10.11900/0412.1961.2022.00444
  研究论文 本期目录 | 过刊浏览 |
不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟
孟子凯1,2, 孟智超1,2, 高长源3, 郭辉1,2, 陈汉森3, 陈刘涛3, 徐东生1,2(), 杨锐1,2
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中广核研究院有限公司 深圳 518031
Molecular Dynamics Simulation of Creep Mechanism in Nanocrystalline α-Zirconium Under Various Conditions
MENG Zikai1,2, MENG Zhichao1,2, GAO Changyuan3, GUO Hui1,2, CHEN Hansen3, CHEN Liutao3, XU Dongsheng1,2(), YANG Rui1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China
引用本文:

孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
Zikai MENG, Zhichao MENG, Changyuan GAO, Hui GUO, Hansen CHEN, Liutao CHEN, Dongsheng XU, Rui YANG. Molecular Dynamics Simulation of Creep Mechanism in Nanocrystalline α-Zirconium Under Various Conditions[J]. Acta Metall Sin, 2024, 60(5): 699-712.

全文: PDF(6357 KB)   HTML
摘要: 

为理解锆合金在核反应堆中的辐照损伤及蠕变的微观电子机制,本工作利用分子动力学方法对α-Zr纳米晶在高温、辐照等不同条件下的拉伸蠕变过程进行了模拟。结果表明:温度、应力、辐照和晶粒尺寸会影响纳米晶α-Zr的蠕变行为,升高温度、增大应力和细化晶粒均会促进蠕变过程的进行。蠕变后体系的微观组织发生显著变化,部分晶粒随蠕变的变形过程而长大,另一些晶粒则逐渐缩小甚至消失。变形过程中晶格畸变逐渐向晶粒内部传递,使体系内原有的有序hcp结构受到影响而有序度降低。模拟结果分析发现,晶界迁移是纳米晶α-Zr在稳态蠕变过程中的主要变形机制,升高温度和增大应力水平会使晶界宽化,并促进组织演变。模拟不同能量粒子辐照后,体系中产生大量点缺陷,其扩散对蠕变有一定贡献,且这些缺陷最终汇集于晶界处,可提高晶界可动性。增大辐照能量可加大产生辐照缺陷的数量和尺寸,对蠕变过程起到更大的促进作用。

关键词 纳米晶α-Zr分子动力学结构演化蠕变机制    
Abstract

Zirconium alloys have been widely used because of their good mechanical properties, corrosion resistance, and suitable neutron absorption cross section. However, with the development of engineering technology, the requirements on the service performance, safety, and microstructure stability of zirconium structural materials are increasingly high. Creep refers to the phenomenon where the strain of the material increases with time under the action of stress lower than the yield strength, which will lead to the deformation of the structural material and eventually its failure. It is also an important problem faced by zirconium cladding materials in nuclear reactors. Nanocrystalline zirconium is a strengthening and toughening method, which may also improve other properties of nuclear materials. However, there are very few investigations on the microscopic creep mechanism in the atomic scale of nanocrystalline zirconium. Improving the creep resistance of zirconium materials plays an important role in the safety of components. Therefore, studying the creep behavior of nanocrystalline zirconium and its atomic mechanism is conducive to its better application in industries. In this study, the tensile creep behavior of nanocrystalline α-Zr under different conditions was investigated via molecular dynamics simulation. The main influencing factors of the creep process were analyzed and the influence of polycrystalline structure evolution and deformation mechanism during the steady-state creep process was studied. The effect of irradiation on the creep process was preliminarily explored. Results showed that temperature, stress, irradiation, and grain size affect the creep behavior of nanocrystalline α-Zr. Increasing the temperature and stress level and refining the grains can promote the creep process. The microstructure of the system changed significantly after the creep. Some grains grew up with the creep deformation process, while others gradually shrank, or even disappeared. During deformation, the lattice distortion gradually propagated from the grain boundary to the grains, partly reducing the degree of the hcp order. Simulation results showed that grain boundary migration is the main deformation mechanism of nanocrystalline α-Zr during steady-state creep. Increasing the temperature and stress level will thicken the grain boundary and promote the microstructure evolution. After the cascade collision due to neutrons of different energy levels, a large number of point defects were produced in the system and their diffusion contributed to the creep; these defects were finally collected at the grain boundary, improving the grain boundary mobility. Increasing the irradiation energy can increase the number and size of irradiation defects, promoting the creep process of the nanocrystalline system.

Key wordsnanocrystalline    α-Zr    molecular dynamics    structural evolution    creep mechanism
收稿日期: 2022-09-09     
ZTFLH:  TG146.4  
基金资助:国家重点研发计划项目(2021YFB3702604);中国科学院网信专项项目(CAS-WX2021PY-0103)
通讯作者: 徐东生,dsxu@imr.ac.cn,主要从事钛合金结构材料计算设计研究
Corresponding author: XU Dongsheng, professor, Tel: (024)23971946, E-mail: dsxu@imr.ac.cn
作者简介: 孟子凯,男,1997年生,硕士
Model namend / nm
M11014.39
M22011.43
M3309.98
M4409.07
M5508.42
表1  初始模型的晶粒数量及晶粒尺寸
图1  各模型的拉伸应力-应变曲线
图2  拉伸蠕变模拟示意图
图3  不同温度-晶粒尺寸-应力模拟体系的应变-时间曲线
图4  不同温度-M3-5 GPa模拟体系在蠕变终态时的径向分布函数
图5  不同温度-M3-5 GPa模拟体系在蠕变终态(300 ps)时的原子快照
图6  773 K-M3-5 GPa体系在蠕变过程中不同时刻的晶体结构
图7  773 K下,M3-不同应力体系及不同晶粒尺寸-5 GPa体系在蠕变前后的晶界原子含量变化
图8  不同温度-晶粒尺寸-应力模拟体系的位错密度变化曲线
图9  573 K-M4-5 GPa体系在蠕变过程中不同时刻的位错结构
图10  773 K-M3-不同应力体系在蠕变始末状态时的原子快照
图11  不同温度-M4-5 GPa体系在蠕变始末状态时的原子快照
图12  573 K-M4-5 GPa体系在蠕变过程中的组织演化及晶界附近原子位移分析
图13  不同蠕变条件下M3模拟体系中最大尺寸晶粒的体积增长率
图14  M4体系在受到不同能量的初级碰撞原子(PKA)级联碰撞后的原子快照
图15  PKA能量对不同体系蠕变的影响
图16  不同温度-M4-5 GPa-PKA能量的级联体系在蠕变终态(300 ps)时的晶体结构
图17  不同温度-晶粒尺寸-应力-PKA能量的级联体系的均方位移曲线
1 Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
2 Kim K T. Evolutionary developments of advanced PWR nuclear fuels and cladding materials[J]. Nucl. Eng. Des., 2013, 263: 59
doi: 10.1016/j.nucengdes.2013.04.013
3 Yu J N. Material Radiation Effects[M]. Beijing: Chemical Industry Press, 2007: 1
3 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 1
4 Azevedo C R F. A review on neutron-irradiation-induced hardening of metallic components[J]. Eng. Fail. Anal., 2011, 18: 1921
doi: 10.1016/j.engfailanal.2011.06.008
5 Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys[M]. 2nd Ed., New York: Springer, 2017: 167
6 Wan F R. Radiation Damage of Metallic Materials[M]. Beijing: Science Press, 1993: 1
6 万发荣. 金属材料的辐照损伤[M]. 北京: 科学出版社, 1993: 1
7 Tavassoli A A F. Present limits and improvements of structural materials for fusion reactors—A review[J]. J. Nucl. Mater., 2002, 302: 73
doi: 10.1016/S0022-3115(02)00794-8
8 Guguloth K, Mitra R, Chowdhury S G, et al. Mechanism of creep deformation with evolution of microstructure and texture of Zr-2.5Nb alloy[J]. Mater. Sci. Eng., 2018, A721: 286
9 Guguloth K, Ghosh M, Swaminathan J, et al. Tensile creep and rupture behavior along with evolution of microstructure in a Zr-2.5Nb alloy[J]. Mater. Sci. Eng., 2020, A791: 139681
10 Kozar R W, Jaworski A W, Webb T W, et al. In situ monitored in-pile creep testing of zirconium alloys[J]. J. Nucl. Mater., 2014, 444: 14
doi: 10.1016/j.jnucmat.2013.08.043
11 Nichols F A. Theory of the creep of zircaloy during neutron irradiation[J]. J. Nucl. Mater., 1969, 30: 249
doi: 10.1016/0022-3115(69)90241-4
12 Wang B Z, Ding S R, Chen L, et al. Effect of irradiation creep on hydrogen-pick-up induced multi-field coupling behavior in zircaloy cladding tube[J]. At. Energy Sci. Technol., 2017, 51: 1625
12 汪秉忠, 丁淑蓉, 陈 亮 等. 辐照蠕变对锆合金包壳管吸氢所致多场耦合行为的影响[J]. 原子能科学技术, 2017, 51: 1625
doi: 10.7538/yzk.2017.51.09.1625
13 Xu D S, Chang J P, Li J, et al. Dislocation slip or deformation twinning: Confining pressure makes a difference[J]. Mater. Sci. Eng., 2004, A387-389: 840
14 Xu D S, Wang H, Yang R, et al. Molecular dynamics investigation of deformation twinning in γ-TiAl sheared along the pseudo-twinning direction[J]. Acta Mater., 2008, 56: 1065
doi: 10.1016/j.actamat.2007.11.007
15 Wang H, Xu D S, Yang R, et al. The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl[J]. Acta Mater., 2009, 57: 3725
doi: 10.1016/j.actamat.2009.04.019
16 Wang H, Bao Q L, Zhou G, et al. Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium[J]. J. Mater. Res., 2019, 34: 1608
doi: 10.1557/jmr.2019.125
17 Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
18 Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Comput. Phys. Commun., 2022, 271: 108171
doi: 10.1016/j.cpc.2021.108171
19 Mendelev M I, Ackland G J. Development of an interatomic potential for the simulation of phase transformations in zirconium[J]. Philos. Mag. Lett., 2007, 87: 349
doi: 10.1080/09500830701191393
20 Zhou W, Tian J T, Feng Q J, et al. Molecular dynamics simulations of high-energy displacement cascades in hcp-Zr[J]. J. Nucl. Mater., 2018, 508: 540
doi: 10.1016/j.jnucmat.2018.06.002
21 Mendelev M I, Bokstein B S. Molecular dynamics study of self-diffusion in Zr[J]. Philos. Mag., 2010, 90: 637
doi: 10.1080/14786430903219020
22 Mendelev M I, Kramer M J, Ott R T, et al. Molecular dynamics simulation of diffusion in supercooled Cu-Zr alloys[J]. Philos. Mag., 2009, 89: 109
doi: 10.1080/14786430802570648
23 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
24 Liu X Y, Zhao X C, Yang X R, et al. Progress in research on creep behavior of ultrafine/nano-grained metallic materials[J]. Chin. J. Rare Met., 2016, 40: 1282
24 刘晓燕, 赵西成, 杨西荣 等. 超细晶/纳米晶金属材料的蠕变行为研究进展[J]. 稀有金属, 2016, 40: 1282
25 Wang Y J, Ishii A, Ogata S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics[J]. Mater. Trans., 2012, 53: 156
doi: 10.2320/matertrans.MD201122
26 Blum W, Eisenlohr P. Dislocation mechanics of creep[J]. Mater. Sci. Eng., 2009, A510-511: 7
27 Chen Y C. Fundamental problems of diffusional creep theory[J]. Chin. J. Rare Met., 2012, 36: 171
27 陈永翀. 扩散蠕变理论的基础问题研究[J]. 稀有金属, 2012, 36: 171
28 Morris D G, Gutierrez-Urrutia I, Muñoz-Morris M A. The high-temperature creep behaviour of an Fe-Al-Zr alloy strengthened by intermetallic precipitates[J]. Scr. Mater., 2007, 57: 449
doi: 10.1016/j.scriptamat.2007.05.038
29 Zhu Z. Creep behavior of ultra-fine grained commercial purity zirconium at room temperature[D]. Xi'an: Xi'an University of Architecture and Technology, 2018
29 朱 振. 复合细化超细晶工业纯锆的室温蠕变行为研究[D]. 西安: 西安建筑科技大学, 2018
30 Zhu Y T, Langdon T G. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials[J]. Mater. Sci. Eng., 2005, A409: 234
31 Shan Z W, Stach E A, Wiezorek J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel[J]. Science, 2004, 305: 654
pmid: 15286368
32 Zhu Y T, Huang J Y, Gubicza J, et al. Nanostructures in Ti processed by severe plastic deformation[J]. J. Mater. Res., 2003, 18: 1908
doi: 10.1557/JMR.2003.0267
33 Liu X Y, Zhang Q Q, Zhao X C, et al. Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP[J]. Mater. Sci. Eng., 2016, A676: 73
34 Yang X H, Li J, Wang P. Grain boundary migration in nanocrystalline Ni under constant shear strains and its mechanism[J]. Comput. Mater. Sci., 2020, 176: 109530
doi: 10.1016/j.commatsci.2020.109530
35 Yamakov V, Wolf D, Salazar M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater., 2001, 49: 2713
doi: 10.1016/S1359-6454(01)00167-7
36 Tjong S C, Chen H. Nanocrystalline materials and coatings[J]. Mater. Sci. Eng., 2004, R45: 1
37 Haslam A J, Moldovan D, Yamakov V, et al. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation[J]. Acta Mater., 2003, 51: 2097
doi: 10.1016/S1359-6454(03)00011-9
38 Jin M, Minor A M, Stach E A, et al. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature[J]. Acta Mater., 2004, 52: 5381
doi: 10.1016/j.actamat.2004.07.044
[1] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[5] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[6] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[7] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[8] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[9] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[10] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[11] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[14] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[15] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.