Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1159-1172    DOI: 10.11900/0412.1961.2023.00144
  综述 本期目录 | 过刊浏览 |
三联冶炼GH4169合金研究进展
杜金辉1,2(), 毕中南1,2, 曲敬龙2
1钢铁研究总院 高温合金新材料北京市重点实验室 北京 100081
2北京钢研高纳科技股份有限公司 北京 100081
Recent Development of Triple Melt GH4169 Alloy
DU Jinhui1,2(), BI Zhongnan1,2, QU Jinglong2
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2Gaona Aero Material Co., Ltd, Beijing 100081, China
引用本文:

杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
Jinhui DU, Zhongnan BI, Jinglong QU. Recent Development of Triple Melt GH4169 Alloy[J]. Acta Metall Sin, 2023, 59(9): 1159-1172.

全文: PDF(2545 KB)   HTML
摘要: 

三联冶炼技术的突破促进了我国GH4169合金盘锻件全流程制备技术的优化。本文综述了GH4169合金的化学成分、三联冶炼技术、开坯技术、锻造技术、残余应力控制、质量控制体系等方面的研究进展。三联冶炼技术的突破提高了GH4169合金的纯净度,降低了冶金缺陷概率;镦拔+径锻联合开坯提高了GH4169合金棒材组织均匀性和成材率;残余应力控制技术降低了GH4169合金盘件加工和服役过程中的变形量。此外,本文讨论了GH4169合金在超高强度、超大尺寸、高耐蚀性能和抗氢脆等研究中存在的难题,并对未来工作方向进行了展望。

关键词 GH4169合金三联冶炼镦拔径锻残余应力    
Abstract

The breakthrough application of triple melt technology (vacuum induction melting (VIM) + electroslag remelting (ESR) + vacuum arc remelting (VAR)) for fabricating GH4169 alloy facilitated the optimization of the entire production process of GH4169 disks. This paper summarizes the research progress on the chemical composition, triple melting, homogenization treatment, cogging, disk forging, residual stress control, and quality control system of GH4169 alloy. The breakthrough and large-scale application of triple melting technology have resulted in improved purity of the GH4169 alloy and reduced occurrence probability of metallurgical defects. In addition, the microstructural uniformity and yield of forging bars have been improved by the combination of fast (upsetting and drawing) and radial forging. Furthermore, deformations occurring during the machining and operation of GH4169 disks have been reduced using residual stress control technology. Results related to ultrahigh strength, ultralarge scale, high corrosion resistance, and hydrogen embrittlement characteristics of GH4169 alloy are discussed, and potential future research directions are outlined here.

Key wordsGH4169 alloy    triple melt    upsetting and drawing    radial forging    residual stress
收稿日期: 2023-03-31     
ZTFLH:  TG113.12  
基金资助:国家重点研发计划项目(2022YFF0609300);国家重点研发计划项目(2017YFA0700703);国家科技重大专项项目(2019-VI-0021-0137)
作者简介: 杜金辉,男,1967年生,正高级工程师,博士
GradeCCrNiCoNbMoAlTiFe
Normal0.015-0.06017.00-21.0050.00-55.00≤ 1.004.75-5.502.80-3.300.30-0.700.75-1.15Bal.
Premium0.015-0.06017.00-21.0050.00-55.00≤ 1.005.00-5.502.80-3.300.30-0.700.75-1.15Bal.
High purity0.012-0.03617.00-19.0052.00-55.00≤ 1.005.20-5.552.80-3.150.35-0.650.75-1.1516.00-19.00
GradeSiCuMnMgPSNOB
Normal≤ 0.35≤ 0.30≤ 0.35≤ 0.010≤ 0.015≤ 0.0080--≤ 0.006
Premium≤ 0.35≤ 0.30≤ 0.35≤ 0.005≤ 0.015≤ 0.00200.010.0050≤ 0.006
High purity≤ 0.35≤ 0.30≤ 0.35≤ 0.0030.007-0.015≤ 0.00100.010.0025≤ 0.006
表1  GH4169合金主要化学成分 (mass fraction / %)
图1  GH4169合金中S和O元素含量的演变过程
图2  合金液在流槽内运动模拟的速度云图和流场迹线图(a) flow velocity (b) flow field traces
图3  真空感应熔炼(VIM)浇注过程中不同时刻锭模内的温度分布模拟结果及弦向应力和轴向应力模拟结果
SlagDomesticDomestic optimizationOversea
CaF2505570
CaO202015
Al2O3221615
MgO530
TiO2360
表2  GH4169合金渣系成分表 (mass fraction / %)
图4  GH4169合金电渣重熔(ESR)铸锭边缘部位不同类型夹杂物的数量密度
图5  三联冶炼GH4169合金真空电弧重熔(VAR)铸锭低倍组织的数值模拟结果和实际解剖结果
图6  黑斑形成机理图[23]
图7  三联冶炼GH4169合金全流程中不同尺寸夹杂物所占比例及典型夹杂物形貌和EDS面扫元素分布图
图8  GH4169合金均匀化的VAR铸锭组织
图9  数值模拟的锻造方式对GH4169合金盘锻件晶粒尺寸的影响
图10  残余应力控制超级气冷设备示意图和工件流体场分布设计
图11  国家质量基础设施支撑高温合金盘件质量稳定性的示意图
SampleLab. 1Lab. 2Lab. 3Lab. 4Lab. 5Lab. 6Lab. 7Error range
15.675.455.485.375.235.455.5120.44
25.675.535.495.305.265.445.4980.41
35.665.545.545.365.475.505.5060.30
45.695.505.525.305.285.475.4560.41
55.635.515.485.375.395.455.4960.26
表3  我国不同实验室对GH4169合金Nb元素的分析结果 (mass fraction / %)
1 Eiselstein H L, Tillack D J. The invention and definition of alloy 625 [R]. Warrendale: The Minerals, Metals & Materials Society, 1991
2 Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
2 杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
3 Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development [J]. Mater. China, 2012, 31(12): 12
3 杜金辉, 吕旭东, 邓 群 等. GH4169合金研制进展 [J]. 中国材料进展, 2012, 31(12): 12
4 Simcock J H. Induction melting [P]. USA Pat, 05012487, 1991
5 Li Z B. New advances in vacuum metallurgy [J]. Vac. Sci. Technol., 1999, 19: 175
doi: 10.1116/1.1322652
5 李正邦. 真空冶金新进展 [J]. 真空科学与技术, 1999, 19: 175
6 Heaslip L J, McLean A, Sommerville I D. Chemical and Physical Interactions During Transfer Operations [M]. Warrendale: Iron and Steel Society, 1983: 35
7 Morales R D, Díaz-Cruz M, Palfox-Ramos J, et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
doi: 10.1002/(ISSN)1869-344Xa
8 Zhang L, Huang Y W, Yang S B, et al. Water modeling of turbulence inhibitor in tundish [J]. Iron Steel, 2002, 37(12): 17
8 张 立, 黄耀文, 杨时标 等. 连铸中间包湍流控制器水模实验研究 [J]. 钢铁, 2002, 37(12): 17
9 Yuan J B, Yu X B, Chang E, et al. Phyical modeling of melt in three strand tundish of continuous casting [J]. Steelmaking, 2003, 19(1): 42
9 袁己百, 于学斌, 常 锷 等. 三流连铸中间包的物理模拟 [J]. 炼钢, 2003, 19(1): 42
10 Wang F, Li B K. Analysis of electromagnetic field and Joule heating of electroslag remelting processes [J]. Acta Metall. Sin., 2010, 46: 794
doi: 10.3724/SP.J.1037.2010.00080
10 王 芳, 李宝宽. 电渣重熔过程中的电磁场和Joule热分析 [J]. 金属学报, 2010, 46: 794
11 Wang Q, He Z, Li B K, et al. A general coupled mathematical model of electromagnetic phenomena, two-phase flow, and heat transfer in electroslag remelting process including conducting in the mold [J]. Metall. Mater. Trans., 2014, 45B: 2425
12 Mills K C, Fox A B. The role of mould fluxes in continuous casting——So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
13 Sun C Y, Guo X M. Electrical conductivity of MO (MO = FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1648
doi: 10.1016/S1003-6326(11)60909-6
14 Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44B: 154
15 Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting process [J]. Magnetohydrodynamics, 2017, 53: 557
doi: 10.22364/mhd
16 Nastac L, Sundarraj S, Yu K O, et al. The stochastic modeling of solidification structures in alloy 718 remelt ingots [J]. JOM, 1998, 50: 30
17 Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials, 2018, 11: 1838
doi: 10.3390/ma11101838
18 Liu H, Deng C, Zhang N, et al. Effect of melting process on Cu content in TC10 ingot [J]. Spec. Steel Technol., 2013, 19(2): 35
18 刘 华, 邓 超, 张 娜 等. 熔炼工艺对TC10铸锭中Cu含量的影响 [J]. 特钢技术, 2013, 19(2): 35
19 Descotes V, Bellot J-P, Perrin-Guérin V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process——Inclusions characterization and modeling [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012013
20 Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
21 Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rep., 2018, 32: 1496
21 张 勇, 李佩桓, 贾崇林 等. 变形高温合金纯净熔炼设备及工艺研究进展 [J]. 材料导报, 2018, 32: 1496
22 Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting [J]. Metall. Mater. Trans., 2008, 39A: 2981
23 Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
24 Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warr-endale: TMS, 1994
25 Takachio K, Nonomura T. Improvement in the quality of superalloy VAR ingots [J]. ISIJ Int., 1996, 36: S85
doi: 10.2355/isijinternational.36.Suppl_S85
26 Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
27 Wang X, Barratt M D, Ward R M, et al. The effect of VAR process parameters on white spot formation in Inconel 718 [J]. J. Mater. Sci., 2004, 39: 7169
doi: 10.1023/B:JMSC.0000048728.85832.44
28 Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2002, 33A: 443
29 Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots [J]. Metals, 2021, 11: 2046
doi: 10.3390/met11122046
30 Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
doi: 10.1016/S1875-5372(16)30127-8
31 Wang R T. Numerical simulation of inclusion movement and electrode oxidation in electroslag remelting process [D]. Wuhan: Wuhan University of Science and Technology, 2018
31 汪瑞婷. 电渣重熔过程中夹杂物运动行为以及电极氧化的数值模拟 [D]. 武汉: 武汉科技大学, 2018
32 O'Hara E M, Harrison N M, Polomski B K, et al. The effect of inclusions on the high-temperature low-cycle fatigue performance of cast MarBN: Experimental characterisation and computational modelling [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 2288
doi: 10.1111/ffe.v41.11
33 Hu Y, Chen W Q, Wan C J, et al. Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension [J]. Metall. Mater. Trans., 2018, 49B: 569
34 Ardi D T, Guowei L, Maharjan N, et al. Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 [J]. Addit. Manuf., 2020, 36: 101442
35 Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
doi: 10.1016/j.vacuum.2018.05.019
36 Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
doi: 10.1016/S1003-6326(11)60814-5
37 Miao Z J, Shan A D, Lu J, et al. Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy [J]. Mater. Sci. Technol., 2011, 27: 1551
doi: 10.1179/026708310X12815992418139
38 Jiang S C, Zhang J, Han F. As-cast microstructure characteristics and homogenization treatment of GH4169 alloy [J]. Heat Treat. Met., 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
38 蒋世川, 张 健, 韩 福. GH4169合金铸态组织特征及均匀化处理工艺 [J]. 金属热处理, 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
39 Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718 [J]. J. Mater. Process. Technol., 2006, 177: 469
doi: 10.1016/j.jmatprotec.2006.04.072
40 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
40 刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
41 Zhang H J, Li C, Guo Q Y, et al. Delta precipitation in wrought Inconel 718 alloy; The role of dynamic recrystallization [J]. Mater. Charact., 2017, 133: 138
doi: 10.1016/j.matchar.2017.09.032
42 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
42 刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
43 Páramo-Kañetas P J, Ozturk U, Calvo J, et al. Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy [J]. Mater. Charact., 2021, 173: 110926
doi: 10.1016/j.matchar.2021.110926
44 Oberwinkler B, Fischersworring-Bunk A, Hüller M, et al. Integrated process modeling for the mechanical properties optimization of direct aged alloy 718 engine disks [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 513
45 Aoki C, Ueno T, Ohno T. Influence of hot working conditions on grain growth behavior of alloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 609
46 Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
46 秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
47 Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
47 毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
48 Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
49 Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
50 Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
51 Blaes N, Donth B, Diwo A, et al. Manufacture of large Ni-base ingots and forgings [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 601
52 Zhu J J, Yuan W H. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy [J]. J. Alloys Compd., 2023: 168707
53 Yadav P C, Shekhar S, Jayabalan B, et al. Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy [J]. Mater. Chem. Phys., 2023, 295: 127098
doi: 10.1016/j.matchemphys.2022.127098
54 Yang X, Chen S N, Wang B X, et al. Superplastic deformation behavior of cold-rolled Inconel 718 alloy at high strain rates [J]. J. Mater. Process. Technol., 2022, 308: 117696
doi: 10.1016/j.jmatprotec.2022.117696
55 Ran R, Wang Y, Zhang Y X, et al. Two-stage annealing treatment to uniformly refine the microstructure, tailor δ precipitates and improve tensile properties of Inconel 718 alloy [J]. J. Alloys Compd., 2022, 927: 166820
doi: 10.1016/j.jallcom.2022.166820
56 Galliano F, Andrieu E, Cloué J M, et al. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in light water reactor environment [J]. Int. J. Hydrogen Energy, 2017, 42: 21371
doi: 10.1016/j.ijhydene.2017.06.211
57 Tang R, Liu H D, Wang D Z, et al. Developing progress of oilfield-grade corrosion resistant alloy 718 [J]. Heat Treat. Met., 2018, 43(7): 54
57 唐 瑞, 刘海定, 王东哲 等. 油气工程用镍基耐蚀合金718的研究进展 [J]. 金属热处理, 2018, 43(7): 54
58 Li G Y, Liu Z Q, Wang B. Study on the infiltration mechanism of tellurium into the Inconel 718 [J]. J. Mater. Sci., 2023, 58: 1966
doi: 10.1007/s10853-023-08150-x
59 Zhang Z B, Moore K L, McMahon G, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy [J]. Corros. Sci., 2019, 146: 58
doi: 10.1016/j.corsci.2018.10.019
60 Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
doi: 10.1016/j.actamat.2017.02.059
61 Zhang Z B, Obasi G, Morana R, et al. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy [J]. Acta Mater., 2016, 113: 272
doi: 10.1016/j.actamat.2016.05.003
62 Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
doi: 10.1016/j.actamat.2016.02.053
63 Stenerud G, Wenner S, Olsen J S, et al. Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718 [J]. Int. J. Hydrogen Energy, 2018, 43: 6765
doi: 10.1016/j.ijhydene.2018.02.088
64 Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
65 Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164 pmid: 25652438
66 Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9: 3386
doi: 10.1038/s41467-018-05549-y pmid: 30140001
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[8] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[12] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[13] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[14] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[15] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.