|
|
三联冶炼GH4169合金研究进展 |
杜金辉1,2( ), 毕中南1,2, 曲敬龙2 |
1钢铁研究总院 高温合金新材料北京市重点实验室 北京 100081 2北京钢研高纳科技股份有限公司 北京 100081 |
|
Recent Development of Triple Melt GH4169 Alloy |
DU Jinhui1,2( ), BI Zhongnan1,2, QU Jinglong2 |
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co., Ltd, Beijing 100081, China |
引用本文:
杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
Jinhui DU,
Zhongnan BI,
Jinglong QU.
Recent Development of Triple Melt GH4169 Alloy[J]. Acta Metall Sin, 2023, 59(9): 1159-1172.
1 |
Eiselstein H L, Tillack D J. The invention and definition of alloy 625 [R]. Warrendale: The Minerals, Metals & Materials Society, 1991
|
2 |
Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
|
2 |
杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
|
3 |
Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development [J]. Mater. China, 2012, 31(12): 12
|
3 |
杜金辉, 吕旭东, 邓 群 等. GH4169合金研制进展 [J]. 中国材料进展, 2012, 31(12): 12
|
4 |
Simcock J H. Induction melting [P]. USA Pat, 05012487, 1991
|
5 |
Li Z B. New advances in vacuum metallurgy [J]. Vac. Sci. Technol., 1999, 19: 175
doi: 10.1116/1.1322652
|
5 |
李正邦. 真空冶金新进展 [J]. 真空科学与技术, 1999, 19: 175
|
6 |
Heaslip L J, McLean A, Sommerville I D. Chemical and Physical Interactions During Transfer Operations [M]. Warrendale: Iron and Steel Society, 1983: 35
|
7 |
Morales R D, Díaz-Cruz M, Palfox-Ramos J, et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
doi: 10.1002/(ISSN)1869-344Xa
|
8 |
Zhang L, Huang Y W, Yang S B, et al. Water modeling of turbulence inhibitor in tundish [J]. Iron Steel, 2002, 37(12): 17
|
8 |
张 立, 黄耀文, 杨时标 等. 连铸中间包湍流控制器水模实验研究 [J]. 钢铁, 2002, 37(12): 17
|
9 |
Yuan J B, Yu X B, Chang E, et al. Phyical modeling of melt in three strand tundish of continuous casting [J]. Steelmaking, 2003, 19(1): 42
|
9 |
袁己百, 于学斌, 常 锷 等. 三流连铸中间包的物理模拟 [J]. 炼钢, 2003, 19(1): 42
|
10 |
Wang F, Li B K. Analysis of electromagnetic field and Joule heating of electroslag remelting processes [J]. Acta Metall. Sin., 2010, 46: 794
doi: 10.3724/SP.J.1037.2010.00080
|
10 |
王 芳, 李宝宽. 电渣重熔过程中的电磁场和Joule热分析 [J]. 金属学报, 2010, 46: 794
|
11 |
Wang Q, He Z, Li B K, et al. A general coupled mathematical model of electromagnetic phenomena, two-phase flow, and heat transfer in electroslag remelting process including conducting in the mold [J]. Metall. Mater. Trans., 2014, 45B: 2425
|
12 |
Mills K C, Fox A B. The role of mould fluxes in continuous casting——So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
|
13 |
Sun C Y, Guo X M. Electrical conductivity of MO (MO = FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1648
doi: 10.1016/S1003-6326(11)60909-6
|
14 |
Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44B: 154
|
15 |
Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting process [J]. Magnetohydrodynamics, 2017, 53: 557
doi: 10.22364/mhd
|
16 |
Nastac L, Sundarraj S, Yu K O, et al. The stochastic modeling of solidification structures in alloy 718 remelt ingots [J]. JOM, 1998, 50: 30
|
17 |
Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials, 2018, 11: 1838
doi: 10.3390/ma11101838
|
18 |
Liu H, Deng C, Zhang N, et al. Effect of melting process on Cu content in TC10 ingot [J]. Spec. Steel Technol., 2013, 19(2): 35
|
18 |
刘 华, 邓 超, 张 娜 等. 熔炼工艺对TC10铸锭中Cu含量的影响 [J]. 特钢技术, 2013, 19(2): 35
|
19 |
Descotes V, Bellot J-P, Perrin-Guérin V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process——Inclusions characterization and modeling [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012013
|
20 |
Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
|
21 |
Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rep., 2018, 32: 1496
|
21 |
张 勇, 李佩桓, 贾崇林 等. 变形高温合金纯净熔炼设备及工艺研究进展 [J]. 材料导报, 2018, 32: 1496
|
22 |
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting [J]. Metall. Mater. Trans., 2008, 39A: 2981
|
23 |
Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
|
24 |
Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warr-endale: TMS, 1994
|
25 |
Takachio K, Nonomura T. Improvement in the quality of superalloy VAR ingots [J]. ISIJ Int., 1996, 36: S85
doi: 10.2355/isijinternational.36.Suppl_S85
|
26 |
Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
|
27 |
Wang X, Barratt M D, Ward R M, et al. The effect of VAR process parameters on white spot formation in Inconel 718 [J]. J. Mater. Sci., 2004, 39: 7169
doi: 10.1023/B:JMSC.0000048728.85832.44
|
28 |
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2002, 33A: 443
|
29 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots [J]. Metals, 2021, 11: 2046
doi: 10.3390/met11122046
|
30 |
Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
doi: 10.1016/S1875-5372(16)30127-8
|
31 |
Wang R T. Numerical simulation of inclusion movement and electrode oxidation in electroslag remelting process [D]. Wuhan: Wuhan University of Science and Technology, 2018
|
31 |
汪瑞婷. 电渣重熔过程中夹杂物运动行为以及电极氧化的数值模拟 [D]. 武汉: 武汉科技大学, 2018
|
32 |
O'Hara E M, Harrison N M, Polomski B K, et al. The effect of inclusions on the high-temperature low-cycle fatigue performance of cast MarBN: Experimental characterisation and computational modelling [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 2288
doi: 10.1111/ffe.v41.11
|
33 |
Hu Y, Chen W Q, Wan C J, et al. Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension [J]. Metall. Mater. Trans., 2018, 49B: 569
|
34 |
Ardi D T, Guowei L, Maharjan N, et al. Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 [J]. Addit. Manuf., 2020, 36: 101442
|
35 |
Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
doi: 10.1016/j.vacuum.2018.05.019
|
36 |
Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
doi: 10.1016/S1003-6326(11)60814-5
|
37 |
Miao Z J, Shan A D, Lu J, et al. Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy [J]. Mater. Sci. Technol., 2011, 27: 1551
doi: 10.1179/026708310X12815992418139
|
38 |
Jiang S C, Zhang J, Han F. As-cast microstructure characteristics and homogenization treatment of GH4169 alloy [J]. Heat Treat. Met., 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
|
38 |
蒋世川, 张 健, 韩 福. GH4169合金铸态组织特征及均匀化处理工艺 [J]. 金属热处理, 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
|
39 |
Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718 [J]. J. Mater. Process. Technol., 2006, 177: 469
doi: 10.1016/j.jmatprotec.2006.04.072
|
40 |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
|
40 |
刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
|
41 |
Zhang H J, Li C, Guo Q Y, et al. Delta precipitation in wrought Inconel 718 alloy; The role of dynamic recrystallization [J]. Mater. Charact., 2017, 133: 138
doi: 10.1016/j.matchar.2017.09.032
|
42 |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
42 |
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
43 |
Páramo-Kañetas P J, Ozturk U, Calvo J, et al. Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy [J]. Mater. Charact., 2021, 173: 110926
doi: 10.1016/j.matchar.2021.110926
|
44 |
Oberwinkler B, Fischersworring-Bunk A, Hüller M, et al. Integrated process modeling for the mechanical properties optimization of direct aged alloy 718 engine disks [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 513
|
45 |
Aoki C, Ueno T, Ohno T. Influence of hot working conditions on grain growth behavior of alloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 609
|
46 |
Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
46 |
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
47 |
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
|
47 |
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
|
48 |
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
|
49 |
Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
|
50 |
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
|
51 |
Blaes N, Donth B, Diwo A, et al. Manufacture of large Ni-base ingots and forgings [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 601
|
52 |
Zhu J J, Yuan W H. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy [J]. J. Alloys Compd., 2023: 168707
|
53 |
Yadav P C, Shekhar S, Jayabalan B, et al. Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy [J]. Mater. Chem. Phys., 2023, 295: 127098
doi: 10.1016/j.matchemphys.2022.127098
|
54 |
Yang X, Chen S N, Wang B X, et al. Superplastic deformation behavior of cold-rolled Inconel 718 alloy at high strain rates [J]. J. Mater. Process. Technol., 2022, 308: 117696
doi: 10.1016/j.jmatprotec.2022.117696
|
55 |
Ran R, Wang Y, Zhang Y X, et al. Two-stage annealing treatment to uniformly refine the microstructure, tailor δ precipitates and improve tensile properties of Inconel 718 alloy [J]. J. Alloys Compd., 2022, 927: 166820
doi: 10.1016/j.jallcom.2022.166820
|
56 |
Galliano F, Andrieu E, Cloué J M, et al. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in light water reactor environment [J]. Int. J. Hydrogen Energy, 2017, 42: 21371
doi: 10.1016/j.ijhydene.2017.06.211
|
57 |
Tang R, Liu H D, Wang D Z, et al. Developing progress of oilfield-grade corrosion resistant alloy 718 [J]. Heat Treat. Met., 2018, 43(7): 54
|
57 |
唐 瑞, 刘海定, 王东哲 等. 油气工程用镍基耐蚀合金718的研究进展 [J]. 金属热处理, 2018, 43(7): 54
|
58 |
Li G Y, Liu Z Q, Wang B. Study on the infiltration mechanism of tellurium into the Inconel 718 [J]. J. Mater. Sci., 2023, 58: 1966
doi: 10.1007/s10853-023-08150-x
|
59 |
Zhang Z B, Moore K L, McMahon G, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy [J]. Corros. Sci., 2019, 146: 58
doi: 10.1016/j.corsci.2018.10.019
|
60 |
Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
doi: 10.1016/j.actamat.2017.02.059
|
61 |
Zhang Z B, Obasi G, Morana R, et al. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy [J]. Acta Mater., 2016, 113: 272
doi: 10.1016/j.actamat.2016.05.003
|
62 |
Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
doi: 10.1016/j.actamat.2016.02.053
|
63 |
Stenerud G, Wenner S, Olsen J S, et al. Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718 [J]. Int. J. Hydrogen Energy, 2018, 43: 6765
doi: 10.1016/j.ijhydene.2018.02.088
|
64 |
Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
|
65 |
Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164
pmid: 25652438
|
66 |
Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9: 3386
doi: 10.1038/s41467-018-05549-y
pmid: 30140001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|