|
|
Pt-Al涂层对DD413合金高温拉伸性能的影响 |
王迪1,2, 贺莉丽3, 王栋2( ), 王莉2, 张思倩1, 董加胜2, 陈立佳1, 张健2 |
1 沈阳工业大学 材料科学与工程学院 沈阳 110870 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3 中国航发南方工业有限公司 株洲 412000 |
|
Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures |
WANG Di1,2, HE Lili3, WANG Dong2( ), WANG Li2, ZHANG Siqian1, DONG Jiasheng2, CHEN Lijia1, ZHANG Jian2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 AECC Southern Industrial Limited Company, Zhuzhou 412000, China |
引用本文:
王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
Di WANG,
Lili HE,
Dong WANG,
Li WANG,
Siqian ZHANG,
Jiasheng DONG,
Lijia CHEN,
Jian ZHANG.
Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. Acta Metall Sin, 2023, 59(3): 424-434.
1 |
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
|
2 |
Wang D, Wang D, Xie G, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-based single-crystal superalloy [J]. Acta Metall. Sin., 2021, 57: 780
doi: 10.11900/0412.1961.2020.00246
|
2 |
王 迪, 王 栋, 谢 光 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响 [J]. 金属学报, 2021, 57: 780
|
3 |
Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
|
4 |
Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
doi: 10.1016/j.corsci.2018.02.006
|
5 |
Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
|
6 |
Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
|
7 |
Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
doi: 10.1016/j.corsci.2019.108115
|
8 |
Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
doi: 10.1016/j.corsci.2016.05.011
|
9 |
Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
doi: 10.1016/j.corsci.2016.01.024
|
10 |
Krishna G R, Das D K, Singh V, et al. Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process [J]. Mater. Sci. Eng., 1998, A251: 40
|
11 |
Lowrie R, Boone D H. Composite coatings of CoCrAlY plus platinum [J]. Thin Solid Films, 1977, 45: 491
doi: 10.1016/0040-6090(77)90236-X
|
12 |
Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
doi: 10.1016/S1359-6454(00)00156-7
|
13 |
Haynes J A, Pint B A, More K L, et al. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings [J]. Oxid. Met., 2002, 58: 513
doi: 10.1023/A:1020525123056
|
14 |
Qin F, Anderegg J W, Jenks C J, et al. The effect of Pt on Ni3Al surface oxidation at low-pressures [J]. Surf. Sci., 2007, 601: 146
doi: 10.1016/j.susc.2006.09.014
|
15 |
Alam M Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
|
16 |
Alam M Z, Kamat S V, Jayaram V, et al. Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading [J]. Acta Mater., 2014, 67: 278
doi: 10.1016/j.actamat.2013.12.033
|
17 |
Vogel D, Newman L, Deb P, et al. Ductile-to-brittle transition temperature behavior of platinum-modified coatings [J]. Mater. Sci. Eng., 1987, 88: 227
doi: 10.1016/0025-5416(87)90089-9
|
18 |
Alam M Z, Srivathsa B, Kamat S V, et al. Study of brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method [J]. Trans. Indian Inst. Met., 2011, 64: 57
doi: 10.1007/s12666-011-0011-y
|
19 |
Dryepondt S, Pint B A. Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens [J]. Surf. Coat. Technol., 2010, 205: 1195
doi: 10.1016/j.surfcoat.2010.08.081
|
20 |
Noebe R D, Cullers C L, Bowman R R. The effect of strain rate and temperature on the tensile properties of NiAl [J]. J. Mater. Res., 1992, 7: 605
doi: 10.1557/JMR.1992.0605
|
21 |
Eskner M, Sandström R. Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique [J]. Surf. Coat. Technol., 2003, 165: 71
doi: 10.1016/S0257-8972(02)00702-8
|
22 |
Alam M Z, Chatterjee D, Muraleedharan K, et al. Effect of strain rate on ductile-to-brittle transition temperature of a free-standing Pt-aluminide bond coat [J]. Metall. Mater Trans., 2011, 42A: 1431
|
23 |
Alam M Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
|
24 |
Texier D, Monceau D, Selezneff S, et al. High temperature micromechanical behavior of a Pt-modified nickel aluminide bond-coating and of its interdiffusion zone with the superalloy substrate [J]. Metall. Mater. Trans., 2020, 51A: 1475
|
25 |
Reppich B. Some new aspects concerning particle hardening mechanisms in γ′ precipitating Ni-base alloys—I. Theoretical concept [J]. Acta Metall., 1982, 30: 87
doi: 10.1016/0001-6160(82)90048-7
|
26 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 151
|
26 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 151
|
27 |
Feng D. The Physics of Metals Mechanical Properties of Metals [M]. Vol. 3, Beijing: Science Press, 1999: 495
|
27 |
冯 端. 金属物理学(第三卷 金属力学性质) [M]. 北京: 科学出版社, 1999: 495
|
28 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
doi: 10.1080/14786437408213555
|
29 |
Groves G W, Kelly A. Change of shape due to dislocation climb [J]. Philos. Mag., 1969, 19: 977
doi: 10.1080/14786436908225862
|
30 |
Noebe R D, Bowman R R, Nathal M V. Physical and mechanical properties of the B2 compound NiAl [J]. Int. Mater. Rev., 1993, 38: 193
doi: 10.1179/imr.1993.38.4.193
|
31 |
Rickman J M, LeSar R, Srolovitz D J. Solute effects on dislocation glide in metals [J]. Acta Mater., 2003, 51: 1199
doi: 10.1016/S1359-6454(02)00304-X
|
32 |
Su Y, Tian S G, Yu H C, et al. Deformation mechanisms of Ni-based single crystal superalloys during steady-state creep at intermediate temperatures [J]. Acta Metall. Sin., 2015, 51: 1472
doi: 10.11900/0412.1961.2015.00158
|
32 |
苏 勇, 田素贵, 于慧臣 等. 镍基单晶高温合金中温稳态蠕变期间的变形机制 [J]. 金属学报, 2015, 51: 1472
|
33 |
Sakata T, Yasuda H Y, Umakoshi Y. Interphase boundary fracture and grain boundary precipitation of Ni3Al(γ′) phase in β-NiAl bicrystals [J]. Acta Mater., 2003, 51: 1561
doi: 10.1016/S1359-6454(02)00558-X
|
34 |
Jiang C, Sordelet D J, Gleeson B. Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study [J]. Acta Mater., 2006, 54: 2361
doi: 10.1016/j.actamat.2006.01.010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|