Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 424-434    DOI: 10.11900/0412.1961.2022.00241
  研究论文 本期目录 | 过刊浏览 |
Pt-Al涂层对DD413合金高温拉伸性能的影响
王迪1,2, 贺莉丽3, 王栋2(), 王莉2, 张思倩1, 董加胜2, 陈立佳1, 张健2
1 沈阳工业大学 材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国航发南方工业有限公司 株洲 412000
Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures
WANG Di1,2, HE Lili3, WANG Dong2(), WANG Li2, ZHANG Siqian1, DONG Jiasheng2, CHEN Lijia1, ZHANG Jian2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 AECC Southern Industrial Limited Company, Zhuzhou 412000, China
引用本文:

王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
Di WANG, Lili HE, Dong WANG, Li WANG, Siqian ZHANG, Jiasheng DONG, Lijia CHEN, Jian ZHANG. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. Acta Metall Sin, 2023, 59(3): 424-434.

全文: PDF(4577 KB)   HTML
摘要: 

利用SEM和TEM对比研究了无涂层和Pt-Al涂层试样在760和980℃的拉伸性能。研究结果表明:在2个温度下,Pt-Al涂层试样的屈服强度均低于无涂层试样。由于Pt-Al涂层存在韧脆转变温度(ductile to brittle transition temperature,DBTT),因此在不同温度下涂层表现出不同的变形机制和裂纹萌生方式。在高温下由于βγ′转变有利于位错产生滑移,从而导致Pt-Al涂层的塑性变形。Pt-Al涂层在DBTT以上拉伸强度的提高是由于Pt在β-NiAl相中起到固溶强化效应。

关键词 Pt-Al涂层单晶高温合金拉伸性能韧脆转变温度    
Abstract

The Pt-Al coating is a vital section of aero-engine power blades that can improve the operating temperature of the blade. The blade is subjected to axial tensile stress during operation. Both the oxidation of the Pt-Al coating and the microstructure evolution caused by the element diffusion between the coating and the matrix at high temperatures affect the service performance of the blade. However, the specific mechanisms remain unclear. In this work the effect of Pt-Al coating on the tensile properties of a DD413 alloy was studied. SEM and TEM were used to compare the tensile properties of the uncoated and Pt-Al-coated samples, respectively, at 760 and 980oC. Lower yield strength was detected in Pt-Al-coated samples than that in uncoated samples at 760 and 980oC. The different crack initiation modes and deformation mechanisms of Pt-Al coating at 760 and 980oC mainly result from the ductile to brittle transition temperature (DBTT). At high temperatures, the transition from β to γ′ is conducive to the dislocation slip, which leads to the plastic deformation of the Pt-Al coating. The increase in the tensile strength of the Pt-Al layer above DBTT can be attributed to the solidified solution-strengthening effect of Pt in β-NiAl.

Key wordsPt-Al coating    single crystal superalloy    tensile property    ductile to brittle transition temperature
收稿日期: 2022-05-12     
ZTFLH:  TG141  
基金资助:国家科技重大专项项目(P2021-A-IV-001-002);国家科技重大专项项目(2017-Ⅵ-0019-0091);国家科技重大专项项目(J2019-Ⅵ-0010-0124);国家科技重大专项项目(51771204)
作者简介: 王 迪,男,1984年生,博士生
图1  拉伸试样示意图
图2  Pt-Al涂层原始表面和纵截面的SEM像
图3  在760和980℃下无涂层和Pt-Al涂层试样的名义应力(σ)-应变(ε)曲线
Temperature / oCSampleYield strength / MPaUltimate tensile strength / MPaElongation / %
760Uncoated1075 ± 711282 ± 168.0 ± 0.6
Pt-Al coating960 ± 311262 ± 3011.8 ± 5.0
980Uncoated433 ± 6651 ± 420.0 ± 1.0
Pt-Al coating397 ± 26633 ± 1518.5 ± 4.9
表1  在760和980℃下无涂层和Pt-Al涂层试样的拉伸性能
图4  在760和980℃下无涂层和Pt-Al涂层试样的拉伸断口表面的SEM像
图5  在760和980℃下Pt-Al涂层试样拉伸断口涂层区域的SEM像
图6  在760和980℃下无涂层和Pt-Al涂层试样[001]方向拉伸断口纵截面的SE和BSE像
图7  在760和980℃下Pt-Al涂层试样拉伸断口截面腐蚀后的BSE像
MicrostructureInitialAfter 760oC tensile testAfter 980oC tensile test
Oxide layer-5.8 ± 0.73.4 ± 0.6
OL19.7 ± 0.77.0 ± 0.58.2 ± 0.2
IL22.4 ± 1.17.8 ± 0.49.5 ± 0.8
表2  Pt-Al涂层试样拉伸实验前后截面组织厚度 (μm)
图8  在760和980℃下无涂层和Pt-Al涂层试样[001]方向拉伸变形组织的SEM像
图9  无涂层和Pt-Al涂层试样在760和980℃下拉伸断口的位错形态TEM像
1 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
2 Wang D, Wang D, Xie G, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-based single-crystal superalloy [J]. Acta Metall. Sin., 2021, 57: 780
doi: 10.11900/0412.1961.2020.00246
2 王 迪, 王 栋, 谢 光 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响 [J]. 金属学报, 2021, 57: 780
3 Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
4 Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
doi: 10.1016/j.corsci.2018.02.006
5 Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
6 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
7 Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
doi: 10.1016/j.corsci.2019.108115
8 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
doi: 10.1016/j.corsci.2016.05.011
9 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
doi: 10.1016/j.corsci.2016.01.024
10 Krishna G R, Das D K, Singh V, et al. Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process [J]. Mater. Sci. Eng., 1998, A251: 40
11 Lowrie R, Boone D H. Composite coatings of CoCrAlY plus platinum [J]. Thin Solid Films, 1977, 45: 491
doi: 10.1016/0040-6090(77)90236-X
12 Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
doi: 10.1016/S1359-6454(00)00156-7
13 Haynes J A, Pint B A, More K L, et al. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings [J]. Oxid. Met., 2002, 58: 513
doi: 10.1023/A:1020525123056
14 Qin F, Anderegg J W, Jenks C J, et al. The effect of Pt on Ni3Al surface oxidation at low-pressures [J]. Surf. Sci., 2007, 601: 146
doi: 10.1016/j.susc.2006.09.014
15 Alam M Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
16 Alam M Z, Kamat S V, Jayaram V, et al. Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading [J]. Acta Mater., 2014, 67: 278
doi: 10.1016/j.actamat.2013.12.033
17 Vogel D, Newman L, Deb P, et al. Ductile-to-brittle transition temperature behavior of platinum-modified coatings [J]. Mater. Sci. Eng., 1987, 88: 227
doi: 10.1016/0025-5416(87)90089-9
18 Alam M Z, Srivathsa B, Kamat S V, et al. Study of brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method [J]. Trans. Indian Inst. Met., 2011, 64: 57
doi: 10.1007/s12666-011-0011-y
19 Dryepondt S, Pint B A. Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens [J]. Surf. Coat. Technol., 2010, 205: 1195
doi: 10.1016/j.surfcoat.2010.08.081
20 Noebe R D, Cullers C L, Bowman R R. The effect of strain rate and temperature on the tensile properties of NiAl [J]. J. Mater. Res., 1992, 7: 605
doi: 10.1557/JMR.1992.0605
21 Eskner M, Sandström R. Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique [J]. Surf. Coat. Technol., 2003, 165: 71
doi: 10.1016/S0257-8972(02)00702-8
22 Alam M Z, Chatterjee D, Muraleedharan K, et al. Effect of strain rate on ductile-to-brittle transition temperature of a free-standing Pt-aluminide bond coat [J]. Metall. Mater Trans., 2011, 42A: 1431
23 Alam M Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
24 Texier D, Monceau D, Selezneff S, et al. High temperature micromechanical behavior of a Pt-modified nickel aluminide bond-coating and of its interdiffusion zone with the superalloy substrate [J]. Metall. Mater. Trans., 2020, 51A: 1475
25 Reppich B. Some new aspects concerning particle hardening mechanisms in γ′ precipitating Ni-base alloys—I. Theoretical concept [J]. Acta Metall., 1982, 30: 87
doi: 10.1016/0001-6160(82)90048-7
26 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 151
26 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 151
27 Feng D. The Physics of Metals Mechanical Properties of Metals [M]. Vol. 3, Beijing: Science Press, 1999: 495
27 冯 端. 金属物理学(第三卷 金属力学性质) [M]. 北京: 科学出版社, 1999: 495
28 Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
doi: 10.1080/14786437408213555
29 Groves G W, Kelly A. Change of shape due to dislocation climb [J]. Philos. Mag., 1969, 19: 977
doi: 10.1080/14786436908225862
30 Noebe R D, Bowman R R, Nathal M V. Physical and mechanical properties of the B2 compound NiAl [J]. Int. Mater. Rev., 1993, 38: 193
doi: 10.1179/imr.1993.38.4.193
31 Rickman J M, LeSar R, Srolovitz D J. Solute effects on dislocation glide in metals [J]. Acta Mater., 2003, 51: 1199
doi: 10.1016/S1359-6454(02)00304-X
32 Su Y, Tian S G, Yu H C, et al. Deformation mechanisms of Ni-based single crystal superalloys during steady-state creep at intermediate temperatures [J]. Acta Metall. Sin., 2015, 51: 1472
doi: 10.11900/0412.1961.2015.00158
32 苏 勇, 田素贵, 于慧臣 等. 镍基单晶高温合金中温稳态蠕变期间的变形机制 [J]. 金属学报, 2015, 51: 1472
33 Sakata T, Yasuda H Y, Umakoshi Y. Interphase boundary fracture and grain boundary precipitation of Ni3Al(γ′) phase in β-NiAl bicrystals [J]. Acta Mater., 2003, 51: 1561
doi: 10.1016/S1359-6454(02)00558-X
34 Jiang C, Sordelet D J, Gleeson B. Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study [J]. Acta Mater., 2006, 54: 2361
doi: 10.1016/j.actamat.2006.01.010
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[8] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[9] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[12] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[13] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[15] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.