|
|
镁合金抗高温氧化机理研究进展 |
沈朝, 王志鹏, 胡波, 李德江, 曾小勤( ), 丁文江 |
上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240 |
|
Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys |
SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin( ), DING Wenjiang |
National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
Zhao SHEN,
Zhipeng WANG,
Bo HU,
Dejiang LI,
Xiaoqin ZENG,
Wenjiang DING.
Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. Acta Metall Sin, 2023, 59(3): 371-386.
1 |
Davy H. Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia [J]. Philos. Trans. R. Soc. Lond., 1808, 98: 313
|
2 |
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
|
3 |
Ding W J. Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1
|
3 |
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 1
|
4 |
Jeon J, Lee S, Kim B, et al. Effect of Sb and Sr addition on corrosion properties of Mg-5Al-2Si alloy [J]. J. Korean Inst. Met. Mater., 2008, 46: 304
|
5 |
Jun J H, Kim J M, Park B K, et al. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy [J]. J. Mater. Sci., 2005, 40: 2659
doi: 10.1007/s10853-005-2099-0
|
6 |
Shin B, Kim Y, Bae D. Deformation behavior of a wrought Mg-Zn-RE alloy at the elevated temperatures [J]. J. Korean Inst. Met. Mater., 2008, 46: 1
|
7 |
Toda-Caraballo I, Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding the factors influencing yield strength on Mg alloys [J]. Acta Mater., 2014, 75: 287
doi: 10.1016/j.actamat.2014.04.064
|
8 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
9 |
Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
|
10 |
Abaspour S, Cáceres C H. Thermodynamics-based selection and design of creep-resistant cast Mg alloys [J]. Metall. Mater. Trans., 2015, 46A: 5972
|
11 |
Mondal A K, Fechner D, Kumar S, et al. Interrupted creep behaviour of Mg alloys developed for powertrain applications [J]. Mater. Sci. Eng., 2010, A527: 2289
|
12 |
Kondori B, Mahmudi R. Impression creep characteristics of a cast Mg alloy [J]. Metall. Mater. Trans., 2009, 40A: 2007
|
13 |
Jin J, Li H, Li X H. Friction and wear behavior of micro arc oxidation coatings on magnesium alloy at high temperature [J]. Rare Met. Mater. Eng., 2017, 45: 1202
|
14 |
Ming Y, You G Q, Yao F J, et al. Research progress on oxidation and oxidation mechanism of magnesium [J]. Mater. Rev., 2021, 35: 19134
|
14 |
明 玥, 游国强, 姚繁锦 等. 金属镁的氧化及氧化机理研究进展 [J]. 材料导报, 2021, 35: 19134
|
15 |
Li D J, Cheng C L, Le Q C, et al. Progress on the oxidation mechanism of magnesium alloy [J]. Mater. Rev., 2023, 3: 1
doi: 10.1179/imr.1958.3.1.1
|
15 |
李多娇, 程春龙, 乐启炽 等. 镁合金氧化机理研究进展 [J]. 材料导报, 2023, 3: 1
|
16 |
Czerwinski F. Oxidation characteristics of magnesium alloys [J]. JOM, 2012, 64: 1477
doi: 10.1007/s11837-012-0477-z
|
17 |
Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium [J]. Int. Mater. Rev., 2015, 60: 264
doi: 10.1179/1743280415Y.0000000001
|
18 |
Pilling N B, Bedworth R E. The oxidation of metals at high temperatures [J]. J. Inst. Met., 1923, 29: 529
|
19 |
Gulbransen E A. The oxidation and evaporation of magnesium at temperatures from 400oC to 500oC [J]. J. Electrochem. Soc., 1945, 87: 589
|
20 |
Czerwinski F, Kedzierski Z. On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits [J]. J. Mater. Sci., 1997, 32: 2957
doi: 10.1023/A:1018693005002
|
21 |
Jeurgens L P H, Vinodh M S, Mittemeijer E J. Initial oxide-film growth on Mg-based MgAl alloys at room temperature [J]. Acta Mater., 2008, 56: 4621
doi: 10.1016/j.actamat.2008.05.020
|
22 |
Hakiki N E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel [J]. Corros. Sci., 2011, 53: 2688
doi: 10.1016/j.corsci.2011.05.012
|
23 |
Smeltzer W W. The influence of short-circuit grain boundary diffusion on the growth of oxide layers on metals [J]. Mater. Sci. Forum, 1988, 29: 151
doi: 10.4028/www.scientific.net/MSF.29.151
|
24 |
Lea C, Molinari C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys [J]. J. Mater. Sci., 1984, 19: 2336
doi: 10.1007/BF01058110
|
25 |
Krger F A. Physical chemistry of crystals [J]. Chem. Eng. News, 1965, 43: 88
|
26 |
Smeltzer W W. Oxidation of an aluminum-3 per cent magnesium alloy in the temperature range 200-550oC [J]. J. Electrochem. Soc., 1958, 105: 67
doi: 10.1149/1.2428764
|
27 |
Finch G I, Quarrbell A G. The structure of magnesium, zinc and aluminium films [J]. Proc. Roy. Soc., 1933, 141A: 398
|
28 |
Song X, Wang Z W, Zeng R C. Magnesium alloys: Composition, microstructure and ignition resistance [J]. Chin. J. Nonferrous Met., 2021, 31: 598
|
28 |
宋 祥, 王忠卫, 曾荣昌. 镁合金: 成分、组织与阻燃 [J]. 中国有色金属学报, 2021, 31: 598
|
29 |
Wang X M, Zeng X Q, Zhou Y, et al. Early oxidation behaviors of Mg-Y alloys at high temperatures [J]. J. Alloys Compd., 2008, 460: 368
doi: 10.1016/j.jallcom.2007.06.065
|
30 |
Yu X W, Jiang B, He J J, et al. Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures [J]. J. Alloys Compd., 2016, 687: 252
doi: 10.1016/j.jallcom.2016.06.128
|
31 |
Wu J J, Yuan Y, Yang L, et al. The oxidation behavior of Mg-Er binary alloys at 500oC [J]. Corros. Sci., 2022, 195: 109961
doi: 10.1016/j.corsci.2021.109961
|
32 |
Aydin D S, Bayindir Z, Pekguleryuz M O. The effect of strontium (Sr) on the ignition temperature of magnesium (Mg): A look at the pre-ignition stage of Mg-6 wt% Sr [J]. J. Mater. Sci., 2013, 48: 8117
doi: 10.1007/s10853-013-7624-y
|
33 |
Lee D B. High temperature oxidation of AZ31 + 0.3 wt.%Ca and AZ31 + 0.3 wt.%CaO magnesium alloys [J]. Corros. Sci., 2013, 70: 243
doi: 10.1016/j.corsci.2013.01.036
|
34 |
Ming Y, You G Q, Yao F J, et al. High-temperature oxidation of Mg-Ca alloy: Experimentation and density functional theory [J]. Corros. Sci., 2022, 196: 110046
doi: 10.1016/j.corsci.2021.110046
|
35 |
Czerwinski F. The early stage oxidation and evaporation of Mg-9%Al-1%Zn alloy [J]. Corros. Sci., 2004, 46: 377
doi: 10.1016/S0010-938X(03)00151-3
|
36 |
Tan Q Y, Mo N, Lin C L, et al. Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60 wt ppm Be attributed to the formation of a more protective (Mg, Be)O surface oxide [J]. Corros. Sci., 2018, 132: 272
doi: 10.1016/j.corsci.2018.01.006
|
37 |
Tan Q Y, Atrens A, Mo N, et al. Oxidation of magnesium alloys at elevated temperatures in air: A review [J]. Corros. Sci., 2016, 112: 734
doi: 10.1016/j.corsci.2016.06.018
|
38 |
Tan Q Y, Mo N, Jiang B, et al. Combined influence of Be and Ca on improving the high-temperature oxidation resistance of the magnesium alloy Mg-9Al-1Zn [J]. Corros. Sci., 2017, 122: 1
doi: 10.1016/j.corsci.2017.03.023
|
39 |
Wang X M, Zeng X Q, Wu G S, et al. Surface oxidation behavior of MgNd alloys [J]. Appl. Surf. Sci., 2007, 253: 9017
doi: 10.1016/j.apsusc.2007.05.023
|
40 |
Guan M, Hao W X, Fan J F. High temperature oxidation behavior of ignition-proof Mg-Y-Ce alloys [J]. Rare Met. Mater. Eng., 2010, 39: 1375
|
40 |
关 明, 郝维新, 樊建锋. Mg-Y-Ce稀土阻燃镁合金的高温氧化行为研究 [J]. 稀有金属材料与工程, 2010, 39: 1375
|
41 |
Yu X W, Shen S J, Jiang B, et al. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys [J]. Appl. Surf. Sci., 2016, 370: 357
doi: 10.1016/j.apsusc.2016.02.156
|
42 |
Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
|
43 |
Tan Q Y, Yin Y, Mo N, et al. Recent understanding of the oxidation and burning of magnesium alloys [J]. Surf. Innov., 2019, 7: 71
doi: 10.1680/jsuin.18.00062
|
44 |
Cheng C L, Li X Q, Le Q C, et al. Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy [J]. J. Magnes. Alloy., 2020, 8: 1281
doi: 10.1016/j.jma.2019.09.013
|
45 |
Barrena M I, de Salazar J M G, Matesanz L, et al. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys [J]. Mater. Charact., 2011, 62: 982
doi: 10.1016/j.matchar.2011.07.001
|
46 |
Inoue S I, Yamasaki M, Kawamura Y. Classification of high-temperature oxidation behavior of Mg-1 at% X binary alloys and application of proposed taxonomy to nonflammable multicomponent Mg alloys [J]. Corros. Sci., 2020, 174: 108858
doi: 10.1016/j.corsci.2020.108858
|
47 |
Feng Z X, Shi Q N, Wang X Q, et al. Effect of Sr and Ca compound alloying on oxidation weight gain of the AZ31 magnesium alloy [J]. J. Funct. Mater., 2016, 47: 8124
|
47 |
冯中学, 史庆南, 王效琪 等. Sr、Ca复合添加对AZ31镁合金氧化增重的影响 [J]. 功能材料, 2016, 47: 8124
|
48 |
Yuan C M, Huang D Z, Li C, et al. Ignition behavior of magnesium powder layers on a plate heated at constant temperature [J]. J. Hazard. Mater., 2013, 246-247: 283
doi: 10.1016/j.jhazmat.2012.12.038
pmid: 23314397
|
49 |
Südholz A D, Birbilis N, Bettles C J, et al. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions [J]. J. Alloys Compd., 2007, 471: 109
doi: 10.1016/j.jallcom.2008.03.128
|
50 |
Stumphy B, Mudryk Y, Russell A, et al. Oxidation resistance of B2 rare earth-magnesium intermetallic compounds [J]. J. Alloys Compd., 2008, 460: 363
doi: 10.1016/j.jallcom.2007.06.067
|
51 |
Emuna M, Greenberg Y, Hevroni R, et al. Phase diagrams of binary alloys under pressure [J]. J. Alloys Compd., 2016, 687: 360
doi: 10.1016/j.jallcom.2016.06.158
|
52 |
Arrabal R, Pardo A, Merino M C, et al. Oxidation behavior of AZ91D magnesium alloy containing Nd or Gd [J]. Oxid. Met., 2011, 76: 433
doi: 10.1007/s11085-011-9265-3
|
53 |
Zhang M X, Kelly P M. Surface alloying of AZ91D alloy by diffusion coating [J]. J. Mater. Res., 2002, 17: 2477
doi: 10.1557/JMR.2002.0360
|
54 |
Shih T S, Liu J B, Wei P S. Oxide films on magnesium and magnesium alloys [J]. Mater. Chem. Phys., 2007, 104: 497
doi: 10.1016/j.matchemphys.2007.04.010
|
55 |
Pan N, Wei Y H, Hou L F, et al. Oxidation process of AZ61 magnesium alloy at high temperature [J]. Trans. Mater. Heat Treat., 2013, 34(3): 67
|
55 |
潘 娜, 卫英慧, 侯利锋 等. AZ61镁合金高温氧化过程 [J]. 材料热处理学报, 2013, 34(3): 67
|
56 |
Min X G, Du W W, Xue F, et al. Analysis of EET on Ca increasing the melting point of Mg17Al12 phase [J]. Chin. Sci. Bull., 2002, 47: 109
|
56 |
闵学刚, 杜温文, 薛 烽 等. Ca提高Mg17Al12相熔点的现象及EET理论分析 [J]. 科学通报, 2002, 47: 109
|
57 |
Hu C K, Zhao Q, Wang Y B, et al. Heat treatment of Mg-10Gd-3Y-Zr magnesium alloy [J]. Heat Treat. Met., 2018, 43(9): 94
|
57 |
胡传凯, 赵 强, 王艳彬 等. Mg-10Gd-3Y-Zr镁合金的热处理工艺 [J]. 金属热处理, 2018, 43(9): 94
|
58 |
Youdelis W V, Yang C S. Beryllium-enhanced grain refinement of aluminium-titanium alloys [J]. Met. Sci., 1982, 16: 275
|
59 |
Silversmith D J, Averbach B L. Pressure dependence of the elastic constants of beryllium and beryllium-copper alloys [J]. Phys. Rev., 1970, 1B: 567
|
60 |
Zhao H J, Zhang Y H, Kang Y L, et al. Oxidization thermo-dynamics of ignition-proof element and oxides properties in magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 340
|
60 |
赵鸿金, 张迎晖, 康永林 等. 镁合金阻燃元素氧化热力学及氧化物物性分析 [J]. 特种铸造及有色合金, 2006, 26: 340
|
61 |
Balch O K, O'Dwyer J G, Davis G R, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions [J]. Mater. Sci. Eng., 2005, A391: 408
|
62 |
Foerster G. HiLoN: A new approach to magnesium die casting [J]. Adv. Mater. Process., 1998, 154: 79
|
63 |
Wikle K G. Improving aluminum castings with beryllium [J]. AFS Trans., 1978, 6: 119
|
64 |
Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
doi: 10.1007/BF01046818
|
65 |
Kiejna A. Comment on the surface segregation in alkali-metal alloys [J]. J. Phys. Condens. Matter., 1990, 2: 6331
doi: 10.1088/0953-8984/2/29/012
|
66 |
Aydin D S, Bayindir Z, Pekguleryuz M O. High temperature oxidation behavior of hypoeutectic Mg-Sr binary alloys: The Role of the two-phase microstructure and the surface activity of Sr [J]. Adv. Eng. Mater., 2015, 17: 697
doi: 10.1002/adem.201400191
|
67 |
Luo L L, Kang Y H, Yang J C, et al. Nucleation and growth of oxide islands during the initial-stage oxidation of (100)Cu-Pt alloys [J]. J. Appl. Phys., 2015, 117: 065305
|
68 |
Diawara B, Beh Y A, Marcus P. Nucleation and growth of oxide layers on stainless steels (FeCr) using a virtual oxide layer model [J]. J. Phys. Chem., 2010, 114C: 19299
|
69 |
Cai Y, Yan H, Zhu M Y, et al. High-temperature oxidation behavior and corrosion behavior of high strength Mg-xGd alloys with high Gd content [J]. Corros. Sci., 2021, 193: 109872
doi: 10.1016/j.corsci.2021.109872
|
70 |
Rokhlin L L. Magnesium Alloys Containing Rare Earth Metals [M]. London: CRC Press, 2003: 10
|
71 |
Cox E G. Structural inorganic chemistry [J]. Nature, 1946, 157: 386
doi: 10.1038/157386a0
|
72 |
Huang Y B, Chung I S, You B S, et al. Effect of Be addition on the oxidation behavior of Mg-Ca alloys at elevated temperature [J]. Met. Mater. Int., 2004, 10: 7
doi: 10.1007/BF03027357
|
73 |
Van Orman J A, Crispin K L. Diffusion in oxides [J]. Rev. Mineral. Geochem., 2010, 72: 757
doi: 10.2138/rmg.2010.72.17
|
74 |
Zeng X Q, Wang Q D, Lü Y Z, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy [J]. Mater. Sci. Eng., 2001, A301: 154
|
75 |
Zeng X Q, Wang Q D, Lü Y Z, et al. Study on ignition proof magnesium alloy with beryllium and rare earth additions [J]. Scr. Mater., 2000, 43: 403
doi: 10.1016/S1359-6462(00)00440-1
|
76 |
Tan Q Y, Mo N, Jiang B, et al. Oxidation resistance of Mg-9Al-1Zn alloys micro-alloyed with Be [J]. Scr. Mater., 2016, 115: 38
doi: 10.1016/j.scriptamat.2015.12.022
|
77 |
Cao P, Qian M, Stjohn D H. Grain coarsening of magnesium alloys by beryllium [J]. Scr. Mater., 2004, 51: 647
doi: 10.1016/j.scriptamat.2004.06.022
|
78 |
Cao P, Qian M, Stjohn D H. Mechanism for grain refinement of magnesium alloys by superheating [J]. Scr. Mater., 2007, 56: 633
doi: 10.1016/j.scriptamat.2006.12.009
|
79 |
Fan J F, Yang G C, Zhou Y H, et al. Selective oxidation and the third-element effect on the oxidation of Mg-Y alloys at high temperatures [J]. Metall. Mater. Trans., 2009, 40A: 2184
|
80 |
Adachi G Y, Imanaka N. The binary rare earth oxides [J]. Chem. Rev., 1998, 98: 1479
doi: 10.1021/cr940055h
|
81 |
Li M S. Corrosion of Metals at High Temperature [M]. Beijing: Metallurgical Industry Press, 2001: 187
|
81 |
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 187
|
82 |
Nguyen Q B, Gupta M, Srivatsan T S. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2009, A500: 233
|
83 |
Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
|
83 |
邵银华, 王金龙, 张 伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
|
84 |
Nguyen T D, Lee D B. Oxidation of AM60B Mg alloys containing dispersed SiC particles in air at temperatures between 400 and 550oC [J]. Oxid. Met., 2010, 73: 183
doi: 10.1007/s11085-009-9174-x
|
85 |
Wang X J, Hu X S, Wu K, et al. Hot deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir casting [J]. Mater. Sci. Eng., 2008, A492: 481
|
86 |
Li J Q, Wang L, Cheng H W, et al. Synthesis and compressive deformation of rapidly solidified magnesium alloy and composites reinforced by SiCp [J]. Mater. Sci. Eng., 2008, A474: 24
|
87 |
Yang W, Weatherly G C, McComb D W, et al. The structure of SiC-reinforced Mg casting alloys [J]. J. Microsc., 1997, 185: 292
doi: 10.1046/j.1365-2818.1997.1530711.x
|
88 |
Shen Z, Chen K, Yu H B, et al. New insights into the oxidation mechanisms of a ferritic-martensitic steel in high-temperature steam [J]. Acta Mater., 2020, 194: 522
doi: 10.1016/j.actamat.2020.05.052
|
89 |
Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
|
90 |
Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|