Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 371-386    DOI: 10.11900/0412.1961.2022.00495
  综述 本期目录 | 过刊浏览 |
镁合金抗高温氧化机理研究进展
沈朝, 王志鹏, 胡波, 李德江, 曾小勤(), 丁文江
上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240
Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys
SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin(), DING Wenjiang
National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
Zhao SHEN, Zhipeng WANG, Bo HU, Dejiang LI, Xiaoqin ZENG, Wenjiang DING. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. Acta Metall Sin, 2023, 59(3): 371-386.

全文: PDF(4652 KB)   HTML
摘要: 

本文简要回顾了国内外镁合金抗高温氧化机理的研究进展,归纳总结了纯Mg的高温氧化机理和镁合金高温氧化热力学与动力学及抗氧化机理,并探讨了先进表征技术在镁合金高温氧化研究中的潜在应用前景,最后展望了耐高温氧化镁合金的发展方向。主要观点如下:镁合金主要是通过形成具有一定厚度、连续且致密的氧化膜来抑制Mg蒸气向外扩散和O的内渗透;镁合金的高温氧化通常与第二相的热稳定性有密切关系;当微量合金元素不足以在表面生成相应氧化物时,可通过形成置换固溶体和反应性元素效应来提高保护作用;具有表面活性的元素会在合金表面富集并减小氧化物尺寸,从而增强氧化层;合金元素的选择性氧化与协同作用对镁合金的抗氧化性能至关重要;在镁合金中加入纳米或微型颗粒可通过减少特定的氧化区域来提高镁合金的高温抗氧化性。未来关于耐高温氧化镁合金的研究可基于以下方面继续深入:应用先进表征技术精准揭示镁合金抗氧化的机理和本质;建立合金元素与氧化膜晶粒尺寸和力学性能的内在关联;设计合理的多合金元素成分体系。

关键词 镁合金高温氧化抗氧化机理氧化膜先进表征技术    
Abstract

This paper briefly reviews the progress on high-temperature oxidation mechanisms of pure Mg and Mg alloys, the thermodynamics and kinetics of high-temperature oxidation of Mg alloys, and the antioxidation mechanism of Mg alloys. The potential of applying advanced characterization techniques in studying the high-temperature oxidation of Mg alloys is envisaged. Finally, the development trends of the oxidation-resistant Mg alloy are also summarized. The main viewpoints are as follows: The protection of magnesium alloys at high temperatures is provided by the formation of a continuous, dense oxide scale that is a specific thickness and prevents the outward diffusion of magnesium vapor and the inward diffusion of oxygen; the oxidation resistance of Mg alloys is usually closely related to the thermal stability of the second phases; when the trace alloy elements are not enough to form the corresponding surface oxide scale, the oxidation resistance can be improved by creating a substitutional solid solution and using the reactive element effect; the size of the oxide grain size decreases and then enhances the oxidation resistance once the surface active elements is enriched on the surface of the alloys; the selective oxidation and synergistic effect of alloying elements are critical to the oxidation resistance of Mg alloys; the addition of nano or microparticles into the Mg alloys improve the high-temperature oxidation resistance of the Mg alloy by reducing the size of specific oxidation sensitive regions. In the future, the research on the high-temperature oxidation of Mg alloys can be based on the following aspects: Investigating the processes and nature of the oxidation resistance of Mg alloys using cutting-edge characterization techniques; constructing the underlying connections between the alloying elements and the oxide scale grain size and mechanical properties; designing and optimizing multi-alloying element composition systems.

Key wordsMg alloy    high-temperature oxidation    anti-oxidation mechanism    oxide film    advanced characterization technique
收稿日期: 2022-10-08     
ZTFLH:  TG146.2  
基金资助:国家科技重大专项项目No.J2019-Ⅷ-0003-0165(J2019-VIII-0003-0165)
作者简介: 沈 朝,男,1990年生,副教授,博士
图1  Mg-Er合金在500℃时反应(3)~(5)的Gibbs自由能变化(ΔG)与Er原子分数的关系[31]
图2  Mg-8.1%Er合金在500℃空气中形成的多层氧化膜结构示意图[31]
图3  Mg97Y2Zn1和Mg96.9Y2Zn1Yb0.1合金在973 K空气中所形成氧化膜的截面SEM像及EDS分析[46]
图4  Mg-Gd合金在740℃空气中所形成氧化膜的TEM明场像,及立方相、Gd2O3、MgO和基体的HRTEM像[69]
图5  AZ91和AZ91-0.006%Be在400℃空气中氧化2 h后形成氧化膜的截面TEM明场像、HRTEM像、SAED花样及EDS分析[36]
图6  Fe-9Cr铁素体-马氏体(F-M)钢在600℃水蒸气中氧化100 h后的内氧化层-基体界面周围的形态和化学成分分布[88]
图7  Fe-17Cr-9Ni不锈钢在600℃水蒸汽中氧化1500 h后的氧化膜截面[89]
图8  Fe-9Cr F-M钢在600℃水蒸气中氧化100 h后的内层氧化物的APT分析[88]
图9  T91钢在600℃水蒸气中氧化1500 h后氧化膜截面的SEM-EBSD像[90]
图10  T91钢在600℃水蒸气中氧化1500 h后的截面氧化膜的基体-内氧化层界面的TKD分析结果[88,90]
1 Davy H. Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia [J]. Philos. Trans. R. Soc. Lond., 1808, 98: 313
2 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
3 Ding W J. Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1
3 丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 1
4 Jeon J, Lee S, Kim B, et al. Effect of Sb and Sr addition on corrosion properties of Mg-5Al-2Si alloy [J]. J. Korean Inst. Met. Mater., 2008, 46: 304
5 Jun J H, Kim J M, Park B K, et al. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy [J]. J. Mater. Sci., 2005, 40: 2659
doi: 10.1007/s10853-005-2099-0
6 Shin B, Kim Y, Bae D. Deformation behavior of a wrought Mg-Zn-RE alloy at the elevated temperatures [J]. J. Korean Inst. Met. Mater., 2008, 46: 1
7 Toda-Caraballo I, Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding the factors influencing yield strength on Mg alloys [J]. Acta Mater., 2014, 75: 287
doi: 10.1016/j.actamat.2014.04.064
8 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
9 Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
10 Abaspour S, Cáceres C H. Thermodynamics-based selection and design of creep-resistant cast Mg alloys [J]. Metall. Mater. Trans., 2015, 46A: 5972
11 Mondal A K, Fechner D, Kumar S, et al. Interrupted creep behaviour of Mg alloys developed for powertrain applications [J]. Mater. Sci. Eng., 2010, A527: 2289
12 Kondori B, Mahmudi R. Impression creep characteristics of a cast Mg alloy [J]. Metall. Mater. Trans., 2009, 40A: 2007
13 Jin J, Li H, Li X H. Friction and wear behavior of micro arc oxidation coatings on magnesium alloy at high temperature [J]. Rare Met. Mater. Eng., 2017, 45: 1202
14 Ming Y, You G Q, Yao F J, et al. Research progress on oxidation and oxidation mechanism of magnesium [J]. Mater. Rev., 2021, 35: 19134
14 明 玥, 游国强, 姚繁锦 等. 金属镁的氧化及氧化机理研究进展 [J]. 材料导报, 2021, 35: 19134
15 Li D J, Cheng C L, Le Q C, et al. Progress on the oxidation mechanism of magnesium alloy [J]. Mater. Rev., 2023, 3: 1
doi: 10.1179/imr.1958.3.1.1
15 李多娇, 程春龙, 乐启炽 等. 镁合金氧化机理研究进展 [J]. 材料导报, 2023, 3: 1
16 Czerwinski F. Oxidation characteristics of magnesium alloys [J]. JOM, 2012, 64: 1477
doi: 10.1007/s11837-012-0477-z
17 Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium [J]. Int. Mater. Rev., 2015, 60: 264
doi: 10.1179/1743280415Y.0000000001
18 Pilling N B, Bedworth R E. The oxidation of metals at high temperatures [J]. J. Inst. Met., 1923, 29: 529
19 Gulbransen E A. The oxidation and evaporation of magnesium at temperatures from 400oC to 500oC [J]. J. Electrochem. Soc., 1945, 87: 589
20 Czerwinski F, Kedzierski Z. On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits [J]. J. Mater. Sci., 1997, 32: 2957
doi: 10.1023/A:1018693005002
21 Jeurgens L P H, Vinodh M S, Mittemeijer E J. Initial oxide-film growth on Mg-based MgAl alloys at room temperature [J]. Acta Mater., 2008, 56: 4621
doi: 10.1016/j.actamat.2008.05.020
22 Hakiki N E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel [J]. Corros. Sci., 2011, 53: 2688
doi: 10.1016/j.corsci.2011.05.012
23 Smeltzer W W. The influence of short-circuit grain boundary diffusion on the growth of oxide layers on metals [J]. Mater. Sci. Forum, 1988, 29: 151
doi: 10.4028/www.scientific.net/MSF.29.151
24 Lea C, Molinari C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys [J]. J. Mater. Sci., 1984, 19: 2336
doi: 10.1007/BF01058110
25 Krger F A. Physical chemistry of crystals [J]. Chem. Eng. News, 1965, 43: 88
26 Smeltzer W W. Oxidation of an aluminum-3 per cent magnesium alloy in the temperature range 200-550oC [J]. J. Electrochem. Soc., 1958, 105: 67
doi: 10.1149/1.2428764
27 Finch G I, Quarrbell A G. The structure of magnesium, zinc and aluminium films [J]. Proc. Roy. Soc., 1933, 141A: 398
28 Song X, Wang Z W, Zeng R C. Magnesium alloys: Composition, microstructure and ignition resistance [J]. Chin. J. Nonferrous Met., 2021, 31: 598
28 宋 祥, 王忠卫, 曾荣昌. 镁合金: 成分、组织与阻燃 [J]. 中国有色金属学报, 2021, 31: 598
29 Wang X M, Zeng X Q, Zhou Y, et al. Early oxidation behaviors of Mg-Y alloys at high temperatures [J]. J. Alloys Compd., 2008, 460: 368
doi: 10.1016/j.jallcom.2007.06.065
30 Yu X W, Jiang B, He J J, et al. Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures [J]. J. Alloys Compd., 2016, 687: 252
doi: 10.1016/j.jallcom.2016.06.128
31 Wu J J, Yuan Y, Yang L, et al. The oxidation behavior of Mg-Er binary alloys at 500oC [J]. Corros. Sci., 2022, 195: 109961
doi: 10.1016/j.corsci.2021.109961
32 Aydin D S, Bayindir Z, Pekguleryuz M O. The effect of strontium (Sr) on the ignition temperature of magnesium (Mg): A look at the pre-ignition stage of Mg-6 wt% Sr [J]. J. Mater. Sci., 2013, 48: 8117
doi: 10.1007/s10853-013-7624-y
33 Lee D B. High temperature oxidation of AZ31 + 0.3 wt.%Ca and AZ31 + 0.3 wt.%CaO magnesium alloys [J]. Corros. Sci., 2013, 70: 243
doi: 10.1016/j.corsci.2013.01.036
34 Ming Y, You G Q, Yao F J, et al. High-temperature oxidation of Mg-Ca alloy: Experimentation and density functional theory [J]. Corros. Sci., 2022, 196: 110046
doi: 10.1016/j.corsci.2021.110046
35 Czerwinski F. The early stage oxidation and evaporation of Mg-9%Al-1%Zn alloy [J]. Corros. Sci., 2004, 46: 377
doi: 10.1016/S0010-938X(03)00151-3
36 Tan Q Y, Mo N, Lin C L, et al. Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60 wt ppm Be attributed to the formation of a more protective (Mg, Be)O surface oxide [J]. Corros. Sci., 2018, 132: 272
doi: 10.1016/j.corsci.2018.01.006
37 Tan Q Y, Atrens A, Mo N, et al. Oxidation of magnesium alloys at elevated temperatures in air: A review [J]. Corros. Sci., 2016, 112: 734
doi: 10.1016/j.corsci.2016.06.018
38 Tan Q Y, Mo N, Jiang B, et al. Combined influence of Be and Ca on improving the high-temperature oxidation resistance of the magnesium alloy Mg-9Al-1Zn [J]. Corros. Sci., 2017, 122: 1
doi: 10.1016/j.corsci.2017.03.023
39 Wang X M, Zeng X Q, Wu G S, et al. Surface oxidation behavior of MgNd alloys [J]. Appl. Surf. Sci., 2007, 253: 9017
doi: 10.1016/j.apsusc.2007.05.023
40 Guan M, Hao W X, Fan J F. High temperature oxidation behavior of ignition-proof Mg-Y-Ce alloys [J]. Rare Met. Mater. Eng., 2010, 39: 1375
40 关 明, 郝维新, 樊建锋. Mg-Y-Ce稀土阻燃镁合金的高温氧化行为研究 [J]. 稀有金属材料与工程, 2010, 39: 1375
41 Yu X W, Shen S J, Jiang B, et al. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys [J]. Appl. Surf. Sci., 2016, 370: 357
doi: 10.1016/j.apsusc.2016.02.156
42 Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
43 Tan Q Y, Yin Y, Mo N, et al. Recent understanding of the oxidation and burning of magnesium alloys [J]. Surf. Innov., 2019, 7: 71
doi: 10.1680/jsuin.18.00062
44 Cheng C L, Li X Q, Le Q C, et al. Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy [J]. J. Magnes. Alloy., 2020, 8: 1281
doi: 10.1016/j.jma.2019.09.013
45 Barrena M I, de Salazar J M G, Matesanz L, et al. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys [J]. Mater. Charact., 2011, 62: 982
doi: 10.1016/j.matchar.2011.07.001
46 Inoue S I, Yamasaki M, Kawamura Y. Classification of high-temperature oxidation behavior of Mg-1 at% X binary alloys and application of proposed taxonomy to nonflammable multicomponent Mg alloys [J]. Corros. Sci., 2020, 174: 108858
doi: 10.1016/j.corsci.2020.108858
47 Feng Z X, Shi Q N, Wang X Q, et al. Effect of Sr and Ca compound alloying on oxidation weight gain of the AZ31 magnesium alloy [J]. J. Funct. Mater., 2016, 47: 8124
47 冯中学, 史庆南, 王效琪 等. Sr、Ca复合添加对AZ31镁合金氧化增重的影响 [J]. 功能材料, 2016, 47: 8124
48 Yuan C M, Huang D Z, Li C, et al. Ignition behavior of magnesium powder layers on a plate heated at constant temperature [J]. J. Hazard. Mater., 2013, 246-247: 283
doi: 10.1016/j.jhazmat.2012.12.038 pmid: 23314397
49 Südholz A D, Birbilis N, Bettles C J, et al. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions [J]. J. Alloys Compd., 2007, 471: 109
doi: 10.1016/j.jallcom.2008.03.128
50 Stumphy B, Mudryk Y, Russell A, et al. Oxidation resistance of B2 rare earth-magnesium intermetallic compounds [J]. J. Alloys Compd., 2008, 460: 363
doi: 10.1016/j.jallcom.2007.06.067
51 Emuna M, Greenberg Y, Hevroni R, et al. Phase diagrams of binary alloys under pressure [J]. J. Alloys Compd., 2016, 687: 360
doi: 10.1016/j.jallcom.2016.06.158
52 Arrabal R, Pardo A, Merino M C, et al. Oxidation behavior of AZ91D magnesium alloy containing Nd or Gd [J]. Oxid. Met., 2011, 76: 433
doi: 10.1007/s11085-011-9265-3
53 Zhang M X, Kelly P M. Surface alloying of AZ91D alloy by diffusion coating [J]. J. Mater. Res., 2002, 17: 2477
doi: 10.1557/JMR.2002.0360
54 Shih T S, Liu J B, Wei P S. Oxide films on magnesium and magnesium alloys [J]. Mater. Chem. Phys., 2007, 104: 497
doi: 10.1016/j.matchemphys.2007.04.010
55 Pan N, Wei Y H, Hou L F, et al. Oxidation process of AZ61 magnesium alloy at high temperature [J]. Trans. Mater. Heat Treat., 2013, 34(3): 67
55 潘 娜, 卫英慧, 侯利锋 等. AZ61镁合金高温氧化过程 [J]. 材料热处理学报, 2013, 34(3): 67
56 Min X G, Du W W, Xue F, et al. Analysis of EET on Ca increasing the melting point of Mg17Al12 phase [J]. Chin. Sci. Bull., 2002, 47: 109
56 闵学刚, 杜温文, 薛 烽 等. Ca提高Mg17Al12相熔点的现象及EET理论分析 [J]. 科学通报, 2002, 47: 109
57 Hu C K, Zhao Q, Wang Y B, et al. Heat treatment of Mg-10Gd-3Y-Zr magnesium alloy [J]. Heat Treat. Met., 2018, 43(9): 94
57 胡传凯, 赵 强, 王艳彬 等. Mg-10Gd-3Y-Zr镁合金的热处理工艺 [J]. 金属热处理, 2018, 43(9): 94
58 Youdelis W V, Yang C S. Beryllium-enhanced grain refinement of aluminium-titanium alloys [J]. Met. Sci., 1982, 16: 275
59 Silversmith D J, Averbach B L. Pressure dependence of the elastic constants of beryllium and beryllium-copper alloys [J]. Phys. Rev., 1970, 1B: 567
60 Zhao H J, Zhang Y H, Kang Y L, et al. Oxidization thermo-dynamics of ignition-proof element and oxides properties in magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 340
60 赵鸿金, 张迎晖, 康永林 等. 镁合金阻燃元素氧化热力学及氧化物物性分析 [J]. 特种铸造及有色合金, 2006, 26: 340
61 Balch O K, O'Dwyer J G, Davis G R, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions [J]. Mater. Sci. Eng., 2005, A391: 408
62 Foerster G. HiLoN: A new approach to magnesium die casting [J]. Adv. Mater. Process., 1998, 154: 79
63 Wikle K G. Improving aluminum castings with beryllium [J]. AFS Trans., 1978, 6: 119
64 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
doi: 10.1007/BF01046818
65 Kiejna A. Comment on the surface segregation in alkali-metal alloys [J]. J. Phys. Condens. Matter., 1990, 2: 6331
doi: 10.1088/0953-8984/2/29/012
66 Aydin D S, Bayindir Z, Pekguleryuz M O. High temperature oxidation behavior of hypoeutectic Mg-Sr binary alloys: The Role of the two-phase microstructure and the surface activity of Sr [J]. Adv. Eng. Mater., 2015, 17: 697
doi: 10.1002/adem.201400191
67 Luo L L, Kang Y H, Yang J C, et al. Nucleation and growth of oxide islands during the initial-stage oxidation of (100)Cu-Pt alloys [J]. J. Appl. Phys., 2015, 117: 065305
68 Diawara B, Beh Y A, Marcus P. Nucleation and growth of oxide layers on stainless steels (FeCr) using a virtual oxide layer model [J]. J. Phys. Chem., 2010, 114C: 19299
69 Cai Y, Yan H, Zhu M Y, et al. High-temperature oxidation behavior and corrosion behavior of high strength Mg-xGd alloys with high Gd content [J]. Corros. Sci., 2021, 193: 109872
doi: 10.1016/j.corsci.2021.109872
70 Rokhlin L L. Magnesium Alloys Containing Rare Earth Metals [M]. London: CRC Press, 2003: 10
71 Cox E G. Structural inorganic chemistry [J]. Nature, 1946, 157: 386
doi: 10.1038/157386a0
72 Huang Y B, Chung I S, You B S, et al. Effect of Be addition on the oxidation behavior of Mg-Ca alloys at elevated temperature [J]. Met. Mater. Int., 2004, 10: 7
doi: 10.1007/BF03027357
73 Van Orman J A, Crispin K L. Diffusion in oxides [J]. Rev. Mineral. Geochem., 2010, 72: 757
doi: 10.2138/rmg.2010.72.17
74 Zeng X Q, Wang Q D, Lü Y Z, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy [J]. Mater. Sci. Eng., 2001, A301: 154
75 Zeng X Q, Wang Q D, Lü Y Z, et al. Study on ignition proof magnesium alloy with beryllium and rare earth additions [J]. Scr. Mater., 2000, 43: 403
doi: 10.1016/S1359-6462(00)00440-1
76 Tan Q Y, Mo N, Jiang B, et al. Oxidation resistance of Mg-9Al-1Zn alloys micro-alloyed with Be [J]. Scr. Mater., 2016, 115: 38
doi: 10.1016/j.scriptamat.2015.12.022
77 Cao P, Qian M, Stjohn D H. Grain coarsening of magnesium alloys by beryllium [J]. Scr. Mater., 2004, 51: 647
doi: 10.1016/j.scriptamat.2004.06.022
78 Cao P, Qian M, Stjohn D H. Mechanism for grain refinement of magnesium alloys by superheating [J]. Scr. Mater., 2007, 56: 633
doi: 10.1016/j.scriptamat.2006.12.009
79 Fan J F, Yang G C, Zhou Y H, et al. Selective oxidation and the third-element effect on the oxidation of Mg-Y alloys at high temperatures [J]. Metall. Mater. Trans., 2009, 40A: 2184
80 Adachi G Y, Imanaka N. The binary rare earth oxides [J]. Chem. Rev., 1998, 98: 1479
doi: 10.1021/cr940055h
81 Li M S. Corrosion of Metals at High Temperature [M]. Beijing: Metallurgical Industry Press, 2001: 187
81 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 187
82 Nguyen Q B, Gupta M, Srivatsan T S. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2009, A500: 233
83 Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
83 邵银华, 王金龙, 张 伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
84 Nguyen T D, Lee D B. Oxidation of AM60B Mg alloys containing dispersed SiC particles in air at temperatures between 400 and 550oC [J]. Oxid. Met., 2010, 73: 183
doi: 10.1007/s11085-009-9174-x
85 Wang X J, Hu X S, Wu K, et al. Hot deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir casting [J]. Mater. Sci. Eng., 2008, A492: 481
86 Li J Q, Wang L, Cheng H W, et al. Synthesis and compressive deformation of rapidly solidified magnesium alloy and composites reinforced by SiCp [J]. Mater. Sci. Eng., 2008, A474: 24
87 Yang W, Weatherly G C, McComb D W, et al. The structure of SiC-reinforced Mg casting alloys [J]. J. Microsc., 1997, 185: 292
doi: 10.1046/j.1365-2818.1997.1530711.x
88 Shen Z, Chen K, Yu H B, et al. New insights into the oxidation mechanisms of a ferritic-martensitic steel in high-temperature steam [J]. Acta Mater., 2020, 194: 522
doi: 10.1016/j.actamat.2020.05.052
89 Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
90 Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[9] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[10] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[11] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[12] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[13] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[14] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[15] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.