Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 387-398    DOI: 10.11900/0412.1961.2021.00482
  研究论文 本期目录 | 过刊浏览 |
DZ445镍基高温合金高温长时间氧化形成的多层膜结构
刘来娣1,2, 丁彪1,2(), 任维丽1,2(), 钟云波1,2, 王晖3, 王秋良3
1 上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
2 上海大学 上海市钢铁冶金新技术开发应用重点实验室 上海 200444
3 中国科学院电工研究所 北京 100190
Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature
LIU Laidi1,2, DING Biao1,2(), REN Weili1,2(), ZHONG Yunbo1,2, WANG Hui3, WANG Qiuliang3
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China
3 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
Laidi LIU, Biao DING, Weili REN, Yunbo ZHONG, Hui WANG, Qiuliang WANG. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. Acta Metall Sin, 2023, 59(3): 387-398.

全文: PDF(3933 KB)   HTML
摘要: 

研究了高Cr / Al比和中Ta含量的DZ445镍基高温合金在900℃下300~2600 h的氧化行为。结果表明,900℃氧化≥ 500 h,氧化膜呈现多层结构,最外层氧化物相为NiCr2O4、Cr2O3和TiO2,次外层为CrTaO4和TiO2,次内层为Al2O3、NiCr2O4和NiO,最内层主要是Al2O3。次外层和次内层的出现使得合金氧化速率降低,表现为动力学方程的指数大幅度增加和氧化速率常数急剧下降。这2层的出现也使得合金氧化机理发生转变,次外层形成后氧化过程由合金元素Cr、Ti、Ni向外扩散转变为由Al的向外扩散和O的向内扩散所控制;次内层形成后,氧化过程转变为Ni、Cr的向外扩散和O的向内扩散所控制。这种多层氧化膜结构使得DZ445合金表现出优异的抗氧化能力。

关键词 镍基高温合金氧化多层结构氧化膜    
Abstract

Nickel-based superalloys have been widely used in aero engines and gas turbines because of their excellent high-temperature strength and exceptional oxidation resistance. The oxidation resistance is obtained using the thermal barrier coatings and alloying elements. In the previous investigations, the oxidation time of the nickel-based superalloys has been focused on hundreds of hours. However, in practice, the superalloys last far longer. This study investigated the superalloy DZ445's oxidation behavior at 900oC for 300-2600 h. An oxidation film with a four-layer structure is formed after oxidation at 900oC for 500 h and above. The outermost layer is primarily composed of NiCr2O4, Cr2O3, and TiO2. The subouter layer consists of CrTaO4 and TiO2, and the subinner layer consists of Al2O3, NiCr2O4, and NiO. The innermost layer is primarily Al2O3. The appearances of the subouter layer and subinner layer greatly reduce the oxidation rate of the alloy, which is represented by the dramatic increase in the oxidation kinetics equation exponent and a sharp reduction of the oxidation rate constant. The formation of subouter layer changes the oxidation mechanism from outward diffusion of alloy elements to O-inward diffusion. When the subinner layer is formed, the oxidation behavior is controlled using the outward diffusion of Ni and Cr and the O-inward diffusion. The multilayer structure gave the alloy an excellent oxidation resistance capacity.

Key wordsNi-based superalloy    oxidation    multi-layer structure oxide film
收稿日期: 2021-11-12     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51871142);省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室自主研发项目(SKLASS 2020-Z04);上海市科学技术委员会项目(19DZ2270200)
作者简介: 刘来娣,女,1994年生,硕士生
CompositionCoCrMoWAlTiTaCZrNi
Mass fraction / %10.0014.001.504.004.003.005.000.080.03Bal.
Atomic fraction / %9.9015.700.901.308.703.701.600.390.02Bal.
表1  DZ445镍基高温合金的化学成分
图1  DZ445镍基高温合金在900℃氧化不同时间的XRD谱
图2  900℃下DZ445镍基高温合金氧化不同时间表面形貌的SEM像
AreaOAlCrNiTiTaCo
A61.832.0417.0011.325.940.081.79
B60.2825.254.407.961.080.031.00
表2  DZ445镍基高温合金在900℃氧化500 h后表面氧化膜不同区域的元素分布 (atomic fraction / %)
图3  DZ445镍基高温合金在900℃氧化不同时间横截面形貌的SEM像
Oxide layerTime / hAlCrTaTiNiOCo
P13001.1132.030.002.051.7762.640.40
5003.3219.350.183.5910.6558.364.56
9150.6928.190.061.605.3862.541.54
11003.3021.540.172.3110.6457.944.09
15001.7616.810.127.1214.5955.354.24
18005.4316.380.184.598.4961.373.57
22002.6920.750.071.5211.3658.754.87
26002.2021.020.221.8010.2962.132.34
P23004.5811.306.148.111.1368.610.15
5002.6310.426.497.645.9865.131.72
9151.096.729.378.364.5169.750.23
11004.226.697.296.793.4571.070.50
15001.3610.976.958.657.0063.131.96
18002.129.647.548.213.2868.161.05
22001.538.897.148.034.8568.331.23
26000.736.539.268.583.7570.900.25
P3300-------
50024.433.550.821.2111.9456.751.32
91514.273.041.141.0315.4364.820.28
110027.661.460.380.449.7159.570.77
150023.143.900.210.2817.8353.291.34
180022.944.470.831.2710.5058.721.27
220021.704.670.200.6215.9755.441.40
260020.973.020.490.4212.6761.351.07
P430036.550.770.180.242.6259.120.51
50033.372.300.320.413.1459.470.99
91534.071.970.190.304.5658.050.88
110035.851.180.151.540.7960.350.13
150035.531.520.060.293.9057.920.78
180035.241.900.070.901.5360.120.24
220033.481.300.110.574.4159.450.69
260033.841.970.170.741.7461.340.20
表3  DZ445镍基高温合金在900℃氧化不同时间后的氧化膜各层元素分布的EDS分析 (atomic fraction / %)
图4  DZ445镍基高温合金在900℃氧化不同时间后各氧化层的厚度变化曲线
图5  DZ445镍基高温合金在不同温度下的恒温氧化动力学曲线
图6  DZ445镍基高温合金在不同温度下氧化增重的双对数曲线
图7  lnK和1 / T的关系图
TimenKE / (kJ·mol-1)
Before the formation of CrTaO4 layer2.171.0 × 10-2 mg2·cm-4·h-1325
Between the formation of subouter and subinner layer4.171.93 × 10-3 mg3·cm-6·h-1424
After the formation of subinner layer25.003.5 × 10-5 mg25·cm-50·h-1485
表4  900℃下不同时段的氧化动力学方程指数(n)、恒温氧化速率常数(K)和氧化激活能(E)
OxideΔGOxideΔG
NiO-279.2NiCr2O4-826.2
Cr2O3-547.1CrTaO4-580.3
TiO2-733.4CoO-274.9
Al2O3-869.2WO2-379.7
Ta2O5-613.5MoO2-382.9
表5  900℃下DZ445镍基高温合金元素氧化物生成的Gibbs自由能(ΔG)[17,21,23] (kJ·mol-1)
图8  CrTaO4、NiCr2O4、Cr2O3和Al2O3的晶体结构
图9  Al、Ni、Cr元素在氧化300和500 h时从最内层(或次内层)到基体的浓度梯度曲线
图10  氧化机理示意图
1 Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co based superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
1 任少飞, 张健杨, 张新房 等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 [J]. 金属学报, 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
2 Zhu Y P, Sheng N C, Xie J, et al. Precipitation behavior of W-rich phases in a high W-containing Ni-based superalloys K416B [J]. Acta Metall. Sin., 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
2 朱玉平, 盛乃成, 谢 君 等. 高钨镍基高温合金K416B富W相的析出行为 [J]. 金属学报, 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
3 Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
doi: 10.11900/0412.1961.2019.00032
3 高 博, 王 磊, 宋 秀 等. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1273
4 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
5 Yang L, Lv H T, Wan C L, et al. Review: Mechanism of reactive element effect-oxide pegging [J]. Acta Metall. Sin., 2021, 57: 182
5 杨 亮, 吕皓天, 万春磊 等. 综述: 活性元素作用机理——氧化物“钉扎”模型 [J]. 金属学报, 2021, 57: 182
6 Zhao M Y, Zhen H J, Dong Z H, et al. Preparation and performance of a novel wear-resistant and high temperature oxidation-resistant NiCrAlSiC composite coating [J]. Acta Metall. Sin., 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
6 赵明雨, 甄会娟, 董志宏 等. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究 [J]. 金属学报, 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
7 Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000 and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
doi: 10.1149/1.2407837
8 Barrett C A, Lowell C E. Resistance of Ni-Cr-Al alloys to cyclic oxidation at 1100 and 1200oC [J]. Oxid. Met., 1977, 11: 199
doi: 10.1007/BF00606544
9 Chen M, Patu S, Shen J N, et al. Effects of Cr+ ion implantation on the oxidation of Ni3Al [J]. J. Mater. Res., 1993, 8: 734
doi: 10.1557/JMR.1993.0734
10 Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy [J]. Oxid. Met., 1981, 15: 375
doi: 10.1007/BF00603531
11 Kim H S, Park S J, Seo S M, et al. High temperature oxidation resistance of Ni-(5~13)Co-(10~16)Cr-(5~9)W-5Al-(1~1.5)Ti-(3~6)Ta alloys [J]. Met. Mater. Int., 2016, 22: 789
doi: 10.1007/s12540-016-6305-1
12 Park S J, Lee K H, Seo S M, et al. Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000oC by compositional variations [J]. Rare Met., 2020, 39: 918
doi: 10.1007/s12598-018-1063-5
13 Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
doi: 10.1016/j.jallcom.2014.08.259
14 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
15 Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204: 3641
doi: 10.1016/j.surfcoat.2010.04.041
16 Guo H B, Wang D, Peng H, et al. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 78: 369
doi: 10.1016/j.corsci.2013.10.021
17 Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850-900oC [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
18 Xu C Z, Jiang S M, Ma J, et al. High temperature oxidation behaviors of two Ni-Co-Cr-Al-Si-Y coatings deposited by arc ion palting [J]. Acta Metall. Sin., 2009, 45: 964
18 徐朝政, 姜肃猛, 马 军 等. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为 [J]. 金属学报, 2009, 45: 964
19 Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
20 Pei H Q, Wen Z X, Yue Z F. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050oC and 1100oC in air [J]. J. Alloys Compd., 2017, 704: 218
doi: 10.1016/j.jallcom.2017.02.031
21 Zheng L, Zhang M C, Dong J X. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000oC [J]. Appl. Surf. Sci., 2010, 256: 7510
doi: 10.1016/j.apsusc.2010.05.098
22 Wang C S, Guo L L, Tang L Y, et al. Oxidation behavior of GH984G alloy in steam at 700oC [J]. Acta Metall. Sin., 2019, 55: 893
22 王常帅, 郭莉莉, 唐丽英 等. GH984G合金在700℃水蒸气中的氧化行为 [J]. 金属学报, 2019, 55: 893
doi: 10.11900/0412.1961.2018.00440
23 Liu F J, Zhang M C, Dong J X. High-temperature oxidation of FGH96 P/M superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 102
doi: 10.1016/S1006-7191(07)60014-3
24 Li Y Q, Li J L, Qin C, et al. Isothermal oxidation behavior of DZ125 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 349
24 李涌泉, 李吉林, 秦 春 等. DZ125合金抗高温氧化性能研究 [J]. 特种铸造及有色合金, 2018, 38: 349
25 Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
26 Wu Y, Narita T. The cyclic oxidation behavior of the single crystal TMS-82+ superalloy in humidified air [J]. Mater. Corros., 2009, 60: 781
27 Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ'-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
28 Godlewski K, Godlewska E. Effect of chromium on the protective properties of aluminide coatings [J]. Oxid. Met., 1986, 26: 125
doi: 10.1007/BF00664277
29 Qin L, Pei Y L, Li S S, et al. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys [J]. Corros. Sci., 2017, 129: 192
doi: 10.1016/j.corsci.2017.08.025
30 Park S J, Seo S M, Yoo Y S, et al. Statistical study of the effects of the composition on the oxidation resistance of Ni-Based superalloys [J]. J. Nanomater., 2015, 2015: 929546
31 Lu X D, Chen T. Isothermal oxidation behaviour of a Ni-base superalloy at 900 and 1000oC [J]. J. Funct. Mater., 2015, 46: 4025
31 卢旭东, 陈 涛. 一种镍基合金在900和1000℃的高温氧化行为 [J]. 功能材料, 2015, 46: 4025
32 Lu X D, Yang J B, Yan M, et al. Isothermal oxidation behavior of Ni-Al-Co-Cr-Mo-Ti alloy at 850oC and 950oC [J]. Procedia Eng., 2012, 27: 932
doi: 10.1016/j.proeng.2011.12.540
32 卢旭东, 杨君宝, 阎 明 等. Ni-Al-Co-Cr-Mo-Ti合金在850℃和950℃的氧化行为 [J]. Pcocedia Eng., 2012, 27: 932
33 Brenneman J, Wei J, Sun Z, et al. Oxidation behavior of GTD111 Ni-based superalloy at 900oC in air [J]. Corros. Sci., 2015, 100: 267
doi: 10.1016/j.corsci.2015.07.031
34 Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
doi: 10.1016/j.scriptamat.2004.05.049
35 Cserháti C, Paul A, Kodentsov A A, et al. Intrinsic diffusion in Ni3Al system [J]. Intermetallics, 2003, 11: 291
doi: 10.1016/S0966-9795(02)00235-2
36 Jiang J F, Xiao G F, Wang Y, et al. High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state [J]. J. Alloys Compd., 2019, 784: 394
doi: 10.1016/j.jallcom.2019.01.093
37 Yun D W, Seo S M, Jeong H W, et al. The cyclic oxidation behaviour of Ni-based superalloy GTD-111 with sulphur impurities at 1100oC [J]. Corros. Sci., 2015, 90: 392
doi: 10.1016/j.corsci.2014.10.030
38 Parimin N, Hamzah E. High temperature cyclic oxidation of Ni-based 800H superalloy at 700oC in air [A]. IOP Conference Series: Materials Science and Engineering [C]. Pahang: International Conference on Sustainable Materials, 2020, 957: 012013
39 Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
doi: 10.1016/j.actamat.2010.09.027
40 Karunaratne M S A, Carter P, Reed R C. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300oC [J]. Mater. Sci. Eng., 2000, A281: 229
41 Hu Y B, Cao T S, Cheng C Q, et al. Oxidation behavior of a single-crystal Ni-based superalloy over the temperature range of 850oC-900oC in air [J]. Appl. Surf. Sci., 2019, 484: 209
doi: 10.1016/j.apsusc.2019.04.089
42 Zhao Z. Isothermal oxidation behavior of DZ792 superalloy [D]. Shenyang: Northeastern University, 2009
42 赵 卓. DZ792合金的恒温氧化行为研究 [D]. 沈阳: 东北大学, 2009
43 Venkatu D A, Poteat L E. Diffusion of titanium of single crystal rutile [J]. Mater. Sci. Eng., 1970, 5: 258
doi: 10.1016/0025-5416(70)90014-5
44 Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
45 Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
46 Lv M L, Ni S, Wang Z, et al. Cation ordering/disordering effects upon photocatalytic activity of CrNbO4, CrTaO4, Sr2CrNbO6 and Sr2CrTaO6 [J]. Int. J. Hydrogen Energy, 2016, 41: 1550
doi: 10.1016/j.ijhydene.2015.11.057
47 Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.): 18
47 谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(): 18
48 Pieraggi B, Dabosi F. High-temperature oxidation of a single crystal Ni-base superalloy [J]. Werkst. Korros., 1987, 38: 584
doi: 10.1002/maco.19870381006
49 Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 194
49 李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 194
50 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 470
50 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 470
51 Brandes E A, Brook G B. Smithells Metals Reference Book [M]. 7th Ed., Oxford: Butterworth-Heinemann, 1992: 13
52 Atkinson A, Taylor R I. The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni [J]. J. Mater. Sci., 1978, 13: 427
doi: 10.1007/BF00647789
53 Karunaratne M S A, Reed R C. Interdiffusion of the platinum-group metals in nickel at elevated temperatures [J]. Acta Mater., 2003, 51: 2905
doi: 10.1016/S1359-6454(03)00105-8
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[9] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[10] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[11] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[14] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[15] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.