|
|
DZ445镍基高温合金高温长时间氧化形成的多层膜结构 |
刘来娣1,2, 丁彪1,2( ), 任维丽1,2( ), 钟云波1,2, 王晖3, 王秋良3 |
1 上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444 2 上海大学 上海市钢铁冶金新技术开发应用重点实验室 上海 200444 3 中国科学院电工研究所 北京 100190 |
|
Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature |
LIU Laidi1,2, DING Biao1,2( ), REN Weili1,2( ), ZHONG Yunbo1,2, WANG Hui3, WANG Qiuliang3 |
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China 3 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
Laidi LIU,
Biao DING,
Weili REN,
Yunbo ZHONG,
Hui WANG,
Qiuliang WANG.
Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. Acta Metall Sin, 2023, 59(3): 387-398.
1 |
Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co based superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
|
1 |
任少飞, 张健杨, 张新房 等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 [J]. 金属学报, 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
|
2 |
Zhu Y P, Sheng N C, Xie J, et al. Precipitation behavior of W-rich phases in a high W-containing Ni-based superalloys K416B [J]. Acta Metall. Sin., 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
|
2 |
朱玉平, 盛乃成, 谢 君 等. 高钨镍基高温合金K416B富W相的析出行为 [J]. 金属学报, 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
|
3 |
Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
doi: 10.11900/0412.1961.2019.00032
|
3 |
高 博, 王 磊, 宋 秀 等. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1273
|
4 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
5 |
Yang L, Lv H T, Wan C L, et al. Review: Mechanism of reactive element effect-oxide pegging [J]. Acta Metall. Sin., 2021, 57: 182
|
5 |
杨 亮, 吕皓天, 万春磊 等. 综述: 活性元素作用机理——氧化物“钉扎”模型 [J]. 金属学报, 2021, 57: 182
|
6 |
Zhao M Y, Zhen H J, Dong Z H, et al. Preparation and performance of a novel wear-resistant and high temperature oxidation-resistant NiCrAlSiC composite coating [J]. Acta Metall. Sin., 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
|
6 |
赵明雨, 甄会娟, 董志宏 等. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究 [J]. 金属学报, 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
|
7 |
Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000 and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
doi: 10.1149/1.2407837
|
8 |
Barrett C A, Lowell C E. Resistance of Ni-Cr-Al alloys to cyclic oxidation at 1100 and 1200oC [J]. Oxid. Met., 1977, 11: 199
doi: 10.1007/BF00606544
|
9 |
Chen M, Patu S, Shen J N, et al. Effects of Cr+ ion implantation on the oxidation of Ni3Al [J]. J. Mater. Res., 1993, 8: 734
doi: 10.1557/JMR.1993.0734
|
10 |
Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy [J]. Oxid. Met., 1981, 15: 375
doi: 10.1007/BF00603531
|
11 |
Kim H S, Park S J, Seo S M, et al. High temperature oxidation resistance of Ni-(5~13)Co-(10~16)Cr-(5~9)W-5Al-(1~1.5)Ti-(3~6)Ta alloys [J]. Met. Mater. Int., 2016, 22: 789
doi: 10.1007/s12540-016-6305-1
|
12 |
Park S J, Lee K H, Seo S M, et al. Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000oC by compositional variations [J]. Rare Met., 2020, 39: 918
doi: 10.1007/s12598-018-1063-5
|
13 |
Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
doi: 10.1016/j.jallcom.2014.08.259
|
14 |
Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
|
15 |
Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204: 3641
doi: 10.1016/j.surfcoat.2010.04.041
|
16 |
Guo H B, Wang D, Peng H, et al. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 78: 369
doi: 10.1016/j.corsci.2013.10.021
|
17 |
Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850-900oC [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
|
18 |
Xu C Z, Jiang S M, Ma J, et al. High temperature oxidation behaviors of two Ni-Co-Cr-Al-Si-Y coatings deposited by arc ion palting [J]. Acta Metall. Sin., 2009, 45: 964
|
18 |
徐朝政, 姜肃猛, 马 军 等. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为 [J]. 金属学报, 2009, 45: 964
|
19 |
Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
|
20 |
Pei H Q, Wen Z X, Yue Z F. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050oC and 1100oC in air [J]. J. Alloys Compd., 2017, 704: 218
doi: 10.1016/j.jallcom.2017.02.031
|
21 |
Zheng L, Zhang M C, Dong J X. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000oC [J]. Appl. Surf. Sci., 2010, 256: 7510
doi: 10.1016/j.apsusc.2010.05.098
|
22 |
Wang C S, Guo L L, Tang L Y, et al. Oxidation behavior of GH984G alloy in steam at 700oC [J]. Acta Metall. Sin., 2019, 55: 893
|
22 |
王常帅, 郭莉莉, 唐丽英 等. GH984G合金在700℃水蒸气中的氧化行为 [J]. 金属学报, 2019, 55: 893
doi: 10.11900/0412.1961.2018.00440
|
23 |
Liu F J, Zhang M C, Dong J X. High-temperature oxidation of FGH96 P/M superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 102
doi: 10.1016/S1006-7191(07)60014-3
|
24 |
Li Y Q, Li J L, Qin C, et al. Isothermal oxidation behavior of DZ125 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 349
|
24 |
李涌泉, 李吉林, 秦 春 等. DZ125合金抗高温氧化性能研究 [J]. 特种铸造及有色合金, 2018, 38: 349
|
25 |
Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
|
26 |
Wu Y, Narita T. The cyclic oxidation behavior of the single crystal TMS-82+ superalloy in humidified air [J]. Mater. Corros., 2009, 60: 781
|
27 |
Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ'-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
|
28 |
Godlewski K, Godlewska E. Effect of chromium on the protective properties of aluminide coatings [J]. Oxid. Met., 1986, 26: 125
doi: 10.1007/BF00664277
|
29 |
Qin L, Pei Y L, Li S S, et al. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys [J]. Corros. Sci., 2017, 129: 192
doi: 10.1016/j.corsci.2017.08.025
|
30 |
Park S J, Seo S M, Yoo Y S, et al. Statistical study of the effects of the composition on the oxidation resistance of Ni-Based superalloys [J]. J. Nanomater., 2015, 2015: 929546
|
31 |
Lu X D, Chen T. Isothermal oxidation behaviour of a Ni-base superalloy at 900 and 1000oC [J]. J. Funct. Mater., 2015, 46: 4025
|
31 |
卢旭东, 陈 涛. 一种镍基合金在900和1000℃的高温氧化行为 [J]. 功能材料, 2015, 46: 4025
|
32 |
Lu X D, Yang J B, Yan M, et al. Isothermal oxidation behavior of Ni-Al-Co-Cr-Mo-Ti alloy at 850oC and 950oC [J]. Procedia Eng., 2012, 27: 932
doi: 10.1016/j.proeng.2011.12.540
|
32 |
卢旭东, 杨君宝, 阎 明 等. Ni-Al-Co-Cr-Mo-Ti合金在850℃和950℃的氧化行为 [J]. Pcocedia Eng., 2012, 27: 932
|
33 |
Brenneman J, Wei J, Sun Z, et al. Oxidation behavior of GTD111 Ni-based superalloy at 900oC in air [J]. Corros. Sci., 2015, 100: 267
doi: 10.1016/j.corsci.2015.07.031
|
34 |
Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
doi: 10.1016/j.scriptamat.2004.05.049
|
35 |
Cserháti C, Paul A, Kodentsov A A, et al. Intrinsic diffusion in Ni3Al system [J]. Intermetallics, 2003, 11: 291
doi: 10.1016/S0966-9795(02)00235-2
|
36 |
Jiang J F, Xiao G F, Wang Y, et al. High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state [J]. J. Alloys Compd., 2019, 784: 394
doi: 10.1016/j.jallcom.2019.01.093
|
37 |
Yun D W, Seo S M, Jeong H W, et al. The cyclic oxidation behaviour of Ni-based superalloy GTD-111 with sulphur impurities at 1100oC [J]. Corros. Sci., 2015, 90: 392
doi: 10.1016/j.corsci.2014.10.030
|
38 |
Parimin N, Hamzah E. High temperature cyclic oxidation of Ni-based 800H superalloy at 700oC in air [A]. IOP Conference Series: Materials Science and Engineering [C]. Pahang: International Conference on Sustainable Materials, 2020, 957: 012013
|
39 |
Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
doi: 10.1016/j.actamat.2010.09.027
|
40 |
Karunaratne M S A, Carter P, Reed R C. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300oC [J]. Mater. Sci. Eng., 2000, A281: 229
|
41 |
Hu Y B, Cao T S, Cheng C Q, et al. Oxidation behavior of a single-crystal Ni-based superalloy over the temperature range of 850oC-900oC in air [J]. Appl. Surf. Sci., 2019, 484: 209
doi: 10.1016/j.apsusc.2019.04.089
|
42 |
Zhao Z. Isothermal oxidation behavior of DZ792 superalloy [D]. Shenyang: Northeastern University, 2009
|
42 |
赵 卓. DZ792合金的恒温氧化行为研究 [D]. 沈阳: 东北大学, 2009
|
43 |
Venkatu D A, Poteat L E. Diffusion of titanium of single crystal rutile [J]. Mater. Sci. Eng., 1970, 5: 258
doi: 10.1016/0025-5416(70)90014-5
|
44 |
Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
|
45 |
Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
|
46 |
Lv M L, Ni S, Wang Z, et al. Cation ordering/disordering effects upon photocatalytic activity of CrNbO4, CrTaO4, Sr2CrNbO6 and Sr2CrTaO6 [J]. Int. J. Hydrogen Energy, 2016, 41: 1550
doi: 10.1016/j.ijhydene.2015.11.057
|
47 |
Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.): 18
|
47 |
谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(): 18
|
48 |
Pieraggi B, Dabosi F. High-temperature oxidation of a single crystal Ni-base superalloy [J]. Werkst. Korros., 1987, 38: 584
doi: 10.1002/maco.19870381006
|
49 |
Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 194
|
49 |
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 194
|
50 |
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 470
|
50 |
张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 470
|
51 |
Brandes E A, Brook G B. Smithells Metals Reference Book [M]. 7th Ed., Oxford: Butterworth-Heinemann, 1992: 13
|
52 |
Atkinson A, Taylor R I. The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni [J]. J. Mater. Sci., 1978, 13: 427
doi: 10.1007/BF00647789
|
53 |
Karunaratne M S A, Reed R C. Interdiffusion of the platinum-group metals in nickel at elevated temperatures [J]. Acta Mater., 2003, 51: 2905
doi: 10.1016/S1359-6454(03)00105-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|