| 
					引用本文:
						|  |  
    					|  |  
    					| 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 |  
						| 夏大海(  ), 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬(  ) |  
					| 天津大学 材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350 |  
						|  |  
    					| Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface |  
						| XIA Dahai(  ), JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin(  ) |  
						| Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |  
								夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.	
																												Dahai XIA,
																								Yuanyuan JI,
																								Yingchang MAO,
																								Chengman DENG,
																								Yu ZHU,
																												Wenbin HU. 
				Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. Acta Metall Sin, 2023, 59(2): 297-308.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | Deng Y L, Zhang X M. Development of aluminium and aluminium alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 2115 |  
																| 1 | 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29: 2115 |  
																| 2 | Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology[J]. Acta Armamentarii, 2016, 37: 1291 |  
																| 2 | 黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J]. 兵工学报, 2016, 37: 1291 doi: 10.3969/j.issn.1000-1093.2016.07.018
 |  
																| 3 | Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft[J]. Civ. Aircr. Des. Res., 2015, (3): 60 |  
																| 3 | 江 武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析[J]. 民用飞机设计与研究, 2015, (3): 60 |  
																| 4 | Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corros. Sci., 2019, 158: 108083 doi: 10.1016/j.corsci.2019.06.031
 |  
																| 5 | Chen Y L, Wu X J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng., 2020, 17(6): 44 |  
																| 5 | 陈跃良, 吴省均, 张 勇 等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律[J]. 装备环境工程, 2020, 17(6): 44 |  
																| 6 | Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equip. Environ. Eng., 2017, 14(3): 18 |  
																| 6 | 孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18 |  
																| 7 | Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface[J]. Corros. Commun., 2022, 6: 62 doi: 10.1016/j.corcom.2022.03.001
 |  
																| 8 | Melchers R E, Jeffrey R. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26 doi: 10.1016/j.corsci.2012.07.025
 |  
																| 9 | Li X J, Gui F, Cong H B, et al. Examination of mechanisms for liquid-air-interface corrosion of steel in high level radioactive waste simulants[J]. J. Electrochem. Soc., 2013, 160: C521 doi: 10.1149/2.029311jes
 |  
																| 10 | Li S X, Teague M T, Doll G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corros. Sci., 2018, 141: 243 doi: 10.1016/j.corsci.2018.06.037
 |  
																| 11 | Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone[J]. Corros. Prot., 2002, 23: 18 |  
																| 11 | 黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅰ)—海水潮汐区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 18 |  
																| 12 | Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone[J]. Corros. Prot., 2002, 23: 47 |  
																| 12 | 黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅱ)—海水全浸区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 47 |  
																| 13 | Huang G Q. Corrosion of aluminium alloys in marine environment (III)—A summary of 16 years exposure testing in splash zone[J]. Corros. Prot., 2003, 24: 47 |  
																| 13 | 黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结[J]. 腐蚀与防护, 2003, 24: 47 |  
																| 14 | Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291 doi: 10.1016/j.corsci.2009.06.020
 |  
																| 15 | Zhao L, Mu X, Dong J H, et al. Study on the galvanic current of corrosion behavior for AH32 long-scale specimen in simulated tidal zone[J]. Acta Metall. Sin., 2017, 53: 1445 |  
																| 15 | 赵 林, 穆 鑫, 董俊华 等. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53: 1445 |  
																| 16 | Yu X Y, Xu Y Z, Zhu Y S, et al. Water-line corrosion behavior measured by electrical resistance method and multi-electrode technique[J]. Corros. Prot., 2021, 42(10): 13 |  
																| 16 | 余晓毅, 徐云泽, 朱烨森 等. 基于电阻-多电极联合测量的水线腐蚀行为[J]. 腐蚀与防护, 2021, 42(10): 13 |  
																| 17 | Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247 |  
																| 17 | 常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32: 247 |  
																| 18 | Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements[J]. Electrochim. Acta, 2020, 354: 136747 doi: 10.1016/j.electacta.2020.136747
 |  
																| 19 | Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy[J]. Electrochim. Acta, 2016, 219: 312 doi: 10.1016/j.electacta.2016.09.136
 |  
																| 20 | Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods[J]. Measurement, 2019, 138: 54 doi: 10.1016/j.measurement.2019.02.027
 |  
																| 21 | Xia D H, Behnamian Y. Electrochemical noise: a review of experimental setup, instrumentation and DC removal[J]. Russ. J. Electrochem., 2015, 51: 593 doi: 10.1134/S1023193515070071
 |  
																| 22 | Xia D H, Song S Z, Behnamian Y, et al. Review-Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis[J]. J. Electrochem. Soc., 2020, 167: 081507 |  
																| 23 | Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms[J]. Corros. Eng. Sci. Technol., 2016, 51: 527 |  
																| 24 | Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution[J]. Electrochim. Acta, 2017, 246: 924 doi: 10.1016/j.electacta.2017.06.096
 |  
																| 25 | Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis[J]. Russ. J. Electrochem., 2016, 52: 560 doi: 10.1134/S1023193516060124
 |  
																| 26 | Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205 doi: 10.1016/S1003-6326(21)65727-8
 |  
																| 27 | Zhu Y K, Sun K, Garves J, et al. Micro- and nano-scale intermetallic phases in AA2070-T8 and their corrosion behavior[J]. Electrochim. Acta, 2019, 319: 634 doi: 10.1016/j.electacta.2019.05.028
 |  
																| 28 | Zhu Y K, Frankel G S. Effect of major intermetallic particles on localized corrosion of AA2060-T8[J]. Corrosion, 2019, 75: 29 doi: 10.5006/2867
 |  
																| 29 | Li Y, Li K, Li L D, et al. Corrosion behavior of 3A12, 5052, 6063 aluminum alloys in coastal atmosphere[J]. Corros. Prot., 2019, 40: 490 |  
																| 29 | 李 一, 李 坤, 李立东 等. 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为[J]. 腐蚀与防护, 2019, 40: 490 |  
																| 30 | Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743 doi: 10.1016/S0010-938X(99)00012-8
 |  
																| 31 | Hagyard T, Williams J R. Potential of aluminium in aqueous chloride solutions. Part 1[J]. Trans. Faraday Soc., 1961, 57: 2288 doi: 10.1039/tf9615702288
 |  
																| 32 | Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corros. Sci., 2020, 168: 108568 doi: 10.1016/j.corsci.2020.108568
 |  
																| 33 | Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241 doi: 10.11901/1005.3093.2015.507
 |  
																| 33 | 邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |