|
|
Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为 |
廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇( ) |
中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213 |
|
Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam |
LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu( ) |
National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China |
引用本文:
廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
Jingjing LIAO,
Wei ZHANG,
Junsong ZHANG,
Jun WU,
Zhongbo YANG,
Qian PENG,
Shaoyu QIU.
Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. Acta Metall Sin, 2023, 59(2): 289-296.
1 |
Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res., 2015, 45: 311
doi: 10.1146/annurev-matsci-070214-020951
|
2 |
Hillner E, Franklin D G, Smee J D. Long-term corrosion of Zircaloy before and after irradiation[J]. J. Nucl. Mater., 2000, 278: 334
doi: 10.1016/S0022-3115(99)00230-5
|
3 |
Yang Z B, Zhao W J, Cheng Z Q, et al. Effect of Nb content on the corrosion resistance of Zr-xNb-0.4Sn-0.3Fe alloys[J]. Acta Metall. Sin., 2017, 53: 47
|
3 |
杨忠波, 赵文金, 程竹青 等. Nb含量对Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53: 47
|
4 |
Yang Z B, Zhao W J, Miao Z, et al. Corrosion behavior of Zr-XSn-1Nb-0.3Fe (X = 0-1.5) alloys[J]. Rare Met. Mater. Eng., 2015, 44: 1129
|
4 |
杨忠波, 赵文金, 苗 志 等. Zr-XSn-1Nb-0.3Fe (X = 0~1.5)合金的腐蚀行为研究[J]. 稀有金属材料与工程, 2015, 44: 1129
|
5 |
Likhanskii V V, Evdokimov I A. Effect of additives on the susceptibility of zirconium alloys to nodular corrosion[J]. J. Nucl. Mater., 2009, 392: 447
doi: 10.1016/j.jnucmat.2009.04.003
|
6 |
Zhang H X, Li Z K, Zhou L, et al. Effects of structure and internal stresses in oxide films on corrosion mechanism of new zirconium alloy[J]. Acta Metall. Sin., 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
|
6 |
章海霞, 李中奎, 周 廉 等. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
|
7 |
Polatidis E, Frankel P, Wei J, et al. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction[J]. J. Nucl. Mater., 2013, 432: 102
doi: 10.1016/j.jnucmat.2012.07.025
|
8 |
Preuss M, Frankel P, Lozano-Perez S, et al. Studies regarding corrosion mechanisms in zirconium alloys[J]. J. ASTM Int., 2011, 8: 103246
doi: 10.1520/JAI103246
|
9 |
Ni N, Lozano-Perez S, Sykes J M, et al. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO™ alloys during corrosion in high temperature pressurised water[J]. Corros. Sci., 2011, 53: 4073
doi: 10.1016/j.corsci.2011.08.013
|
10 |
Platt P, Wedge S, Frankel P, et al. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys[J]. J. Nucl. Mater., 2015, 459: 166
doi: 10.1016/j.jnucmat.2015.01.028
|
11 |
Liao J J, Yang Z B, Qiu S Y, et al. Corrosion of new zirconium claddings in 500oC/10.3 MPa steam: Effects of alloying and metallography[J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 981
doi: 10.1007/s40195-018-0857-7
|
12 |
Liao J J, Yang Z B, Qiu S Y, et al. The correlation between tetragonal phase and the undulated metal/oxide interface in the oxide films of zirconium alloys[J]. J. Nucl. Mater., 2019, 524: 101
doi: 10.1016/j.jnucmat.2019.06.039
|
13 |
Qu J W, Tian H, Shi M H, et al. Effect of V addition on the mechanical properties and corrosion resistance of high temperature water vapor of Zr-1Nb-0.1Fe alloy[J]. Nonferrous Met. Eng., 2020, 10(1): 15
|
13 |
渠静雯, 田 航, 石明华 等. 添加V对Zr-1Nb-0.1Fe合金力学性能以及高温水蒸汽腐蚀性能的影响[J]. 有色金属工程, 2020, 10(1): 15
|
14 |
Liao J J, Qiu S Y, Zhang J S, et al. Research on laterally cracking, vertically cracking and transition mechanism in oxide film of zirconium alloy[J]. Nucl. Power Eng., 2020, 41(): 164
|
14 |
廖京京, 邱绍宇, 张君松 等. 锆合金氧化膜中的横纵向开裂及腐蚀转折机理研究[J]. 核动力工程, 2020, 41(): 164
|
15 |
Yardley S S, Moore K L, Ni N, et al. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS[J]. J. Nucl. Mater., 2013, 443: 436
doi: 10.1016/j.jnucmat.2013.07.053
|
16 |
Platt P, Frankel P, Gass M, et al. Critical assessment of finite element analysis applied to metal-eoxide interface roughness in oxidising zirconium alloys[J]. J. Nucl. Mater., 2015, 464: 313
doi: 10.1016/j.jnucmat.2015.05.002
|
17 |
Zhang J S, Lyu J N, Long C S, et al. Calculation of internal stress in oxide films of zirconium alloy[J]. Nucl. Power Eng., 2021, 42(4): 101
|
17 |
张君松, 吕俊男, 龙冲生 等. 锆合金氧化膜的内应力计算[J]. 核动力工程, 2021, 42(4): 101
|
18 |
Yao M Y, Zhang X W, Hou K K, et al. The initial corrosion behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy in deionized water at 250oC[J]. Acta Metall. Sin., 2020, 56: 221
|
18 |
姚美意, 张兴旺, 侯可可 等. Zr-0.75Sn-0.35Fe-0.15Cr合金在250℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56: 221
doi: 10.11900/0412.1961.2019.00191
|
19 |
Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules[J]. Chem. Mater., 2004, 16: 3988
doi: 10.1021/cm040167h
|
20 |
Liao J J, Xu F, Peng Q, et al. Research on the existence and stability of interfacial tetragonal zirconia formed on zirconium alloys[J]. J. Nucl. Mater., 2019, 528: 151846
doi: 10.1016/j.jnucmat.2019.151846
|
21 |
Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Mater., 2007, 55: 1695
doi: 10.1016/j.actamat.2006.10.030
|
22 |
Bouvier P, Godlewski J, Lucazeau G. A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation[J]. J. Nucl. Mater., 2002, 300: 118
doi: 10.1016/S0022-3115(01)00756-5
|
23 |
Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition[J]. J. Nucl. Mater., 2021, 543: 152474
doi: 10.1016/j.jnucmat.2020.152474
|
24 |
Sundell G, Thuvander M, Andrén H O. Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys[J]. Corros. Sci., 2016, 102: 490
doi: 10.1016/j.corsci.2015.11.002
|
25 |
Wang Z, Zhou B X, Wang B Y, et al. Second phase particles and their corrosion behavior of Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy[J]. Acta Metall. Sin., 2016, 52: 78
doi: 10.11900/0412.1961.2015.00260
|
25 |
王 桢, 周邦新, 王波阳 等. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为[J]. 金属学报, 2016, 52: 78
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|