Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 857-867    DOI: 10.11900/0412.1961.2021.00259
  研究论文 本期目录 | 过刊浏览 |
三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能
谷瑞成1,2, 张健2, 张明阳2, 刘艳艳2, 王绍钢3, 焦大2, 刘增乾2(), 张哲峰2()
1.郑州大学 河南先进技术研究院 郑州 450001
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties
GU Ruicheng1,2, ZHANG Jian2, ZHANG Mingyang2, LIU Yanyan2, WANG Shaogang3, JIAO Da2, LIU Zengqian2(), ZHANG Zhefeng2()
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
Ruicheng GU, Jian ZHANG, Mingyang ZHANG, Yanyan LIU, Shaogang WANG, Da JIAO, Zengqian LIU, Zhefeng ZHANG. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. Acta Metall Sin, 2022, 58(7): 857-867.

全文: PDF(3017 KB)   HTML
摘要: 

选用SiC晶须骨架作为增强相,利用重力辅助沉降、压缩致密化、骨架烧结及无压熔渗的方法制备了具有微观三维互穿结构的SiC晶须骨架增强镁基复合材料,并对其微观组织结构与力学性能(特别是断裂韧性)进行了表征与分析。通过对SiC晶须骨架进行预氧化处理,提高了增强相与基体之间的润湿性,并通过调节预氧化温度控制析出相含量和孔洞等缺陷,优化了复合材料的弯曲强度与断裂韧性,获得了稳定的裂纹扩展行为(上升的R曲线)。相比于以纯Mg为基体的复合材料,以AZ91D镁合金为基体的复合材料中析出相含量高且发生粗化,使得材料强度提高的同时断裂韧性降低。

关键词 三维互穿结构镁基复合材料SiC晶须断裂韧性增韧机制    
Abstract

Mg and Mg alloys, as important lightweight metal materials, have attracted great attention due to their excellent properties, such as low density, high specific strength, and good damping properties; however, their extensive applications are strictly limited by their low strength. The strength of Mg and Mg alloys can be effectively increased by introducing reinforcement phases into their matrices, i.e., via fabricating Mg-based composites. Nevertheless, the mechanical properties of Mg-based composites demonstrate a strong dependence on their microstructures. Here, new Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture were fabricated through pressureless infiltration of the melt of pure Mg or AZ91D Mg alloy into the porous scaffolds of SiC whiskers. These whiskers were preferentially stacked in-plane within lamellae in the composites using gravity-assisted sedimentation and subsequent densification during the fabrication process. The microstructures and mechanical properties of the composites, particularly their fracture toughness, were characterized and analyzed. The wettability between the SiC whisker scaffolds and the melt was improved by introducing surface reactions between them which was accomplished by a pre-oxidation treatment of the scaffolds before infiltration. The pre-oxidation temperature was adjusted to ensure an adequate filling of the scaffolds without voids while avoiding the formation of excessive reaction products. The resulting composites exhibited a high flexural strength with a certain extent of fracture toughness as evidenced by stable crack propagation with rising R-curve behavior. In comparison to pure Mg, the composites infiltrated with AZ91D Mg alloy as the matrix contained a larger amount of coarsened precipitates, resulting in apparent brittleness despite increased strength.

Key wordsthree-dimensional interpenetrating-phase architecture    Mg-based composite    SiC whisker    fracture toughness    toughening mechanism
收稿日期: 2021-06-24     
ZTFLH:  TB333  
基金资助:国家重点研发计划项目(2020YFA0710404);国家自然科学基金项目(52173269);国家自然科学基金项目(51871216);国家自然科学基金项目(52101160);辽宁省兴辽英才计划项目(XLYC1907058);中国科学院青年创新促进会项目(2019191)
作者简介: 谷瑞成,男,1996年生,硕士生
图1  三维互穿结构SiC晶须(SiCw)骨架增强镁基复合材料的制备工艺流程示意图
图2  烧结处理前后SiCw骨架的SEM像以及烧结SiCw骨架和经过不同温度预氧化处理后骨架的XRD谱
图3  经不同温度预氧化处理的SiCw骨架熔渗纯Mg和AZ91D镁合金得到的复合材料的XRD谱以及对应1100和1300℃预氧化温度的复合材料的SEM像
图4  经1200℃预氧化处理的SiCw骨架熔渗纯Mg得到的复合材料的SEM像、XRT体积渲染图和将Mg基体透明化后的SiCw增强相的XRT体积渲染图,以及熔渗AZ91D镁合金得到的复合材料的SEM像
图5  经不同预氧化温度处理的SiCw骨架熔渗纯Mg和AZ91D镁合金得到的复合材料的典型弯曲应力-应变曲线,以及对应1200℃预氧化温度的以纯Mg和AZ91D镁合金为基体的复合材料单边缺口三点弯曲的典型载荷-位移曲线及裂纹扩展形貌
图6  经1200℃预氧化处理得到的以纯Mg和AZ91D镁合金为基体的SiCw/Mg复合材料的J积分和相对应的应力强度因子(KJ)随 裂纹扩展长度(Δa)的变化曲线(以AZ91D镁合金为基体的复合材料的断裂韧性水平以虚线表示)
图7  经1200℃预氧化处理得到的以纯Mg为基体的复合材料侧面的裂纹扩展形貌及断后样品的断面形貌
1 Cole G S, Sherman A M. Light weight materials for automotive applications [J]. Mater. Charact., 1995, 35: 3
doi: 10.1016/1044-5803(95)00063-1
2 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
doi: 10.1007/BF01171534
3 Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
doi: 10.4028/www.scientific.net/MSF.350-351.19
4 Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
5 Száraz Z, Trojanová Z, Cabbibo M, et al. Strengthening in a WE54 magnesium alloy containing SiC particles [J]. Mater. Sci. Eng., 2007, A462: 225
6 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
7 Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
doi: 10.1038/nature16445
8 Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future [J]. Mater. Charact., 2015, 105: 30
doi: 10.1016/j.matchar.2015.04.015
9 Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
9 田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
10 Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
doi: 10.1023/B:JMSC.0000043583.47148.31
11 Ma G H, Xiao H, Ye J, et al. Research status and development of magnesium matrix composites [J]. Mater. Sci. Technol., 2020, 36: 645
doi: 10.1080/02670836.2020.1732610
12 Lu L, Lim C Y H, Yeong W M. Effect of reinforcements on strength of Mg9%Al composites [J]. Compos. Struct., 2004, 66: 41
doi: 10.1016/j.compstruct.2004.04.019
13 Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
14 Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.023
15 Tian W B, Sun Z M, Zhang P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures [J]. J. Aust. Ceram. Soc., 2017, 53: 511
doi: 10.1007/s41779-017-0061-7
16 Willander M, Friesel M, Wahab Q U, et al. Silicon carbide and diamond for high temperature device applications [J]. J. Mater. Sci., 2006, 17: 1
doi: 10.1007/BF00809028
17 Chen L Q, Yao Y T. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 762
doi: 10.1007/s40195-014-0161-0
18 Zhang M Y, Jiao D, Tan G Q, et al. Strong, fracture-resistant biomimetic silicon carbide composites with laminated interwoven nanoarchitectures inspired by the crustacean exoskeleton [J]. ACS Appl. Nano Mater., 2019, 2: 1111
doi: 10.1021/acsanm.9b00063
19 Tsukamoto H. Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering [J]. Results Mater., 2021, 9: 100167
20 Tayebi M, Nategh S, Najafi H, et al. Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging [J]. J. Alloys Compd., 2020, 830: 154709
doi: 10.1016/j.jallcom.2020.154709
21 Zheng M Y, Zhang W C, Wu K, et al. The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining [J]. J. Mater. Sci., 2003, 38: 2647
doi: 10.1023/A:1024486619379
22 Hu L X, Wang E D. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting [J]. Mater. Sci. Eng., 2000, A278: 267
23 Zheng M Y, Wu K, Yao C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites [J]. Mater. Sci. Eng., 2001, A318: 50
24 Al-Ketan O, Al-Rub R K A, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials [J]. Adv. Mater. Technol., 2017, 2: 1600235
doi: 10.1002/admt.201600235
25 Naglieri V, Bale H A, Gludovatz B, et al. On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials [J]. Acta Mater., 2013, 61: 6948
doi: 10.1016/j.actamat.2013.08.006
26 Shi L X, Shen P, Zhang D, et al. Reactive wetting in liquid magnesium/silica and magnesium/silicon systems [J]. Appl. Surf. Sci., 2013, 274: 124
doi: 10.1016/j.apsusc.2013.02.126
27 Shi Z, Ochiai S, Gu M, et al. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Appl. Phys., 2002, 74A: 97
28 Shi Z L, Ochiai S, Hojo M, et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
doi: 10.1023/A:1017977931250
29 Hay R S. Crystallization kinetics for SiO2 formed during SiC fiber oxidation in steam [J]. J. Am. Ceram. Soc., 2019, 102: 5587
doi: 10.1111/jace.16341
30 Wang F H, Du Y B, Jiao D, et al. Wood-inspired cement with high strength and multifunctionality [J]. Adv. Sci., 2021, 8: 2000096
doi: 10.1002/advs.202000096
31 Hughes S W. Archimedes revisited: A faster, better, cheaper method of accurately measuring the volume of small objects [J]. Phys. Educ., 2005, 40: 468
doi: 10.1088/0031-9120/40/5/008
32 Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
32 王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
33 Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. R. Soc. Interface, 2010, 7: 741
doi: 10.1098/rsif.2009.0331
34 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
doi: 10.1002/adma.201904603
35 Ferraro C, Garcia-Tuñon E, Rocha V G, et al. Light and strong SiC networks [J]. Adv. Funct. Mater., 2016, 26: 1636
doi: 10.1002/adfm.201504051
36 Naglieri V, Gludovatz B, Tomsia A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Mater., 2015, 98: 141
doi: 10.1016/j.actamat.2015.07.022
37 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865 pmid: 19056979
38 Jiao D, Zhang J, Liu Y Y, et al. Hierarchical toughening of bioinspired nacre-like hybrid carbon composite [J]. Carbon, 2021, 171: 409
doi: 10.1016/j.carbon.2020.09.041
39 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: 5581
40 Wang L F, Lau J, Thomas E L, et al. Co-continuous composite materials for stiffness, strength, and energy dissipation [J]. Adv. Mater., 2011, 23: 1524
doi: 10.1002/adma.201003956
41 Wan Y Z, Xiong G Y, Luo H L, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy [J]. Mater. Des., 2008, 29: 2034
doi: 10.1016/j.matdes.2008.04.017
42 Li J G, Xia C J, Zhang Y J, et al. Effects of TiO2 coating on microstructure and mechanical properties of magnesium matrix composite reinforced with Mg2B2O5w [J]. Mater. Des., 2012, 39: 334
doi: 10.1016/j.matdes.2012.02.059
43 Poddar P, Srivastava V C, De P K, et al. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process [J]. Mater. Sci. Eng., 2007, A460: 357
44 Kaneda H, Choh T. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon [J]. J. Mater. Sci., 1997, 32: 47
doi: 10.1023/A:1018558612135
45 Shaga A, Shen P, Guo R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration [J]. Ceram. Int., 2016, 42: 9653
doi: 10.1016/j.ceramint.2016.03.052
46 Somekawa H, Mukai T. Effect of grain refinement on fracture toughness in extruded pure magnesium [J]. Scr. Mater., 2005, 53: 1059
doi: 10.1016/j.scriptamat.2005.07.001
47 Purazrang K, Abachi P, Kainer K U. Investigation of the mechanical behaviour of magnesium composites [J]. Composites, 1994, 25: 296
doi: 10.1016/0010-4361(94)90222-4
48 Shaga A, Shen P, Xiao L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure [J]. Mater. Sci. Eng., 2017, A708: 199
49 Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
50 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents [J]. Nat. Mater., 2014, 13: 508
doi: 10.1038/nmat3915 pmid: 24658117
51 Ritchie R O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding [J]. Mater. Sci. Eng., 1988, A103: 15
[1] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[2] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[3] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[4] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[8] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[9] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[10] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[11] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[12] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[13] 毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[14] 孙茜,王晓南,章顺虎,杜林秀,邸洪双. 显微组织对新型热轧纳米析出强化钢断裂韧性的影响[J]. 金属学报, 2013, 49(12): 1501-1507.
[15] 贾晓娇 张军 苏海军 宋衎 刘林 傅恒志. 激光悬浮区熔Al2O3基共晶自生复合材料微观组织与力学性能[J]. 金属学报, 2012, 48(12): 1479-1486.