|
|
三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 |
谷瑞成1,2, 张健2, 张明阳2, 刘艳艳2, 王绍钢3, 焦大2, 刘增乾2( ), 张哲峰2( ) |
1.郑州大学 河南先进技术研究院 郑州 450001 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties |
GU Ruicheng1,2, ZHANG Jian2, ZHANG Mingyang2, LIU Yanyan2, WANG Shaogang3, JIAO Da2, LIU Zengqian2( ), ZHANG Zhefeng2( ) |
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
Ruicheng GU,
Jian ZHANG,
Mingyang ZHANG,
Yanyan LIU,
Shaogang WANG,
Da JIAO,
Zengqian LIU,
Zhefeng ZHANG.
Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. Acta Metall Sin, 2022, 58(7): 857-867.
1 |
Cole G S, Sherman A M. Light weight materials for automotive applications [J]. Mater. Charact., 1995, 35: 3
doi: 10.1016/1044-5803(95)00063-1
|
2 |
Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
doi: 10.1007/BF01171534
|
3 |
Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
doi: 10.4028/www.scientific.net/MSF.350-351.19
|
4 |
Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, A302: 37
|
5 |
Száraz Z, Trojanová Z, Cabbibo M, et al. Strengthening in a WE54 magnesium alloy containing SiC particles [J]. Mater. Sci. Eng., 2007, A462: 225
|
6 |
Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
|
7 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
doi: 10.1038/nature16445
|
8 |
Gupta M, Wong W L E. Magnesium-based nanocomposites: Lightweight materials of the future [J]. Mater. Charact., 2015, 105: 30
doi: 10.1016/j.matchar.2015.04.015
|
9 |
Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
|
9 |
田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
|
10 |
Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
doi: 10.1023/B:JMSC.0000043583.47148.31
|
11 |
Ma G H, Xiao H, Ye J, et al. Research status and development of magnesium matrix composites [J]. Mater. Sci. Technol., 2020, 36: 645
doi: 10.1080/02670836.2020.1732610
|
12 |
Lu L, Lim C Y H, Yeong W M. Effect of reinforcements on strength of Mg9%Al composites [J]. Compos. Struct., 2004, 66: 41
doi: 10.1016/j.compstruct.2004.04.019
|
13 |
Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
|
14 |
Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.023
|
15 |
Tian W B, Sun Z M, Zhang P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures [J]. J. Aust. Ceram. Soc., 2017, 53: 511
doi: 10.1007/s41779-017-0061-7
|
16 |
Willander M, Friesel M, Wahab Q U, et al. Silicon carbide and diamond for high temperature device applications [J]. J. Mater. Sci., 2006, 17: 1
doi: 10.1007/BF00809028
|
17 |
Chen L Q, Yao Y T. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 762
doi: 10.1007/s40195-014-0161-0
|
18 |
Zhang M Y, Jiao D, Tan G Q, et al. Strong, fracture-resistant biomimetic silicon carbide composites with laminated interwoven nanoarchitectures inspired by the crustacean exoskeleton [J]. ACS Appl. Nano Mater., 2019, 2: 1111
doi: 10.1021/acsanm.9b00063
|
19 |
Tsukamoto H. Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering [J]. Results Mater., 2021, 9: 100167
|
20 |
Tayebi M, Nategh S, Najafi H, et al. Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging [J]. J. Alloys Compd., 2020, 830: 154709
doi: 10.1016/j.jallcom.2020.154709
|
21 |
Zheng M Y, Zhang W C, Wu K, et al. The deformation and fracture behavior of SiCw/AZ91 magnesium matrix composite during in-situ TEM straining [J]. J. Mater. Sci., 2003, 38: 2647
doi: 10.1023/A:1024486619379
|
22 |
Hu L X, Wang E D. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting [J]. Mater. Sci. Eng., 2000, A278: 267
|
23 |
Zheng M Y, Wu K, Yao C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites [J]. Mater. Sci. Eng., 2001, A318: 50
|
24 |
Al-Ketan O, Al-Rub R K A, Rowshan R. Mechanical properties of a new type of architected interpenetrating phase composite materials [J]. Adv. Mater. Technol., 2017, 2: 1600235
doi: 10.1002/admt.201600235
|
25 |
Naglieri V, Bale H A, Gludovatz B, et al. On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials [J]. Acta Mater., 2013, 61: 6948
doi: 10.1016/j.actamat.2013.08.006
|
26 |
Shi L X, Shen P, Zhang D, et al. Reactive wetting in liquid magnesium/silica and magnesium/silicon systems [J]. Appl. Surf. Sci., 2013, 274: 124
doi: 10.1016/j.apsusc.2013.02.126
|
27 |
Shi Z, Ochiai S, Gu M, et al. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Appl. Phys., 2002, 74A: 97
|
28 |
Shi Z L, Ochiai S, Hojo M, et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
doi: 10.1023/A:1017977931250
|
29 |
Hay R S. Crystallization kinetics for SiO2 formed during SiC fiber oxidation in steam [J]. J. Am. Ceram. Soc., 2019, 102: 5587
doi: 10.1111/jace.16341
|
30 |
Wang F H, Du Y B, Jiao D, et al. Wood-inspired cement with high strength and multifunctionality [J]. Adv. Sci., 2021, 8: 2000096
doi: 10.1002/advs.202000096
|
31 |
Hughes S W. Archimedes revisited: A faster, better, cheaper method of accurately measuring the volume of small objects [J]. Phys. Educ., 2005, 40: 468
doi: 10.1088/0031-9120/40/5/008
|
32 |
Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
32 |
王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
33 |
Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. R. Soc. Interface, 2010, 7: 741
doi: 10.1098/rsif.2009.0331
|
34 |
Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
doi: 10.1002/adma.201904603
|
35 |
Ferraro C, Garcia-Tuñon E, Rocha V G, et al. Light and strong SiC networks [J]. Adv. Funct. Mater., 2016, 26: 1636
doi: 10.1002/adfm.201504051
|
36 |
Naglieri V, Gludovatz B, Tomsia A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Mater., 2015, 98: 141
doi: 10.1016/j.actamat.2015.07.022
|
37 |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865
pmid: 19056979
|
38 |
Jiao D, Zhang J, Liu Y Y, et al. Hierarchical toughening of bioinspired nacre-like hybrid carbon composite [J]. Carbon, 2021, 171: 409
doi: 10.1016/j.carbon.2020.09.041
|
39 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: 5581
|
40 |
Wang L F, Lau J, Thomas E L, et al. Co-continuous composite materials for stiffness, strength, and energy dissipation [J]. Adv. Mater., 2011, 23: 1524
doi: 10.1002/adma.201003956
|
41 |
Wan Y Z, Xiong G Y, Luo H L, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy [J]. Mater. Des., 2008, 29: 2034
doi: 10.1016/j.matdes.2008.04.017
|
42 |
Li J G, Xia C J, Zhang Y J, et al. Effects of TiO2 coating on microstructure and mechanical properties of magnesium matrix composite reinforced with Mg2B2O5w [J]. Mater. Des., 2012, 39: 334
doi: 10.1016/j.matdes.2012.02.059
|
43 |
Poddar P, Srivastava V C, De P K, et al. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process [J]. Mater. Sci. Eng., 2007, A460: 357
|
44 |
Kaneda H, Choh T. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon [J]. J. Mater. Sci., 1997, 32: 47
doi: 10.1023/A:1018558612135
|
45 |
Shaga A, Shen P, Guo R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration [J]. Ceram. Int., 2016, 42: 9653
doi: 10.1016/j.ceramint.2016.03.052
|
46 |
Somekawa H, Mukai T. Effect of grain refinement on fracture toughness in extruded pure magnesium [J]. Scr. Mater., 2005, 53: 1059
doi: 10.1016/j.scriptamat.2005.07.001
|
47 |
Purazrang K, Abachi P, Kainer K U. Investigation of the mechanical behaviour of magnesium composites [J]. Composites, 1994, 25: 296
doi: 10.1016/0010-4361(94)90222-4
|
48 |
Shaga A, Shen P, Xiao L G, et al. High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure [J]. Mater. Sci. Eng., 2017, A708: 199
|
49 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
|
50 |
Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents [J]. Nat. Mater., 2014, 13: 508
doi: 10.1038/nmat3915
pmid: 24658117
|
51 |
Ritchie R O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding [J]. Mater. Sci. Eng., 1988, A103: 15
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|