Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1785-1791    DOI: 10.11900/0412.1961.2018.00122
  本期目录 | 过刊浏览 |
面外拘束效应对单边缺口拉伸试样断裂韧性的影响
李一哲, 龚宝明(), 刘秀国, 王东坡, 邓彩艳
天津大学材料科学与工程学院天津市现代连接技术重点实验室 天津 300354
Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens
Yizhe LI, Baoming GONG(), Xiuguo LIU, Dongpo WANG, Caiyan DENG
Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. Acta Metall Sin, 2018, 54(12): 1785-1791.

全文: PDF(6674 KB)   HTML
摘要: 

采用API X90管线钢,对不同厚度的单边缺口拉伸(SENT)试样进行断裂韧性实验,并结合全场应变测量技术和断口分析,研究SENT试样面外拘束(试样厚度)对裂纹尖端张开位移(CTOD)的影响。结果表明,在相同的载荷水平下,随着试样厚度的增加,最大纵向应变峰值急速下降,高纵向应变区域由裂纹尖端迁移至距裂纹面一定距离的未开裂侧,裂纹尖端的塑性变形能力降低。CTOD值对厚度变化很敏感,随着试样厚度的增加而降低。当试样厚度宽度比≥4时,临界CTOD值达到下平台并保持基本不变。因此,在管线工程设计中,可将试样厚度宽度比等于4作为SENT试样断裂韧性与试样厚度无关的一个参考试样尺寸。

关键词 断裂韧性面外拘束效应单边缺口拉伸完整性评估    
Abstract

The crack-tip stress and strain fields of single edge notch tension (SENT) specimen are similar to those of the full-scale pipe containing surface cracks under longitudinal tension and/or internal pressure. It is well known that material's fracture toughness is not constant, and the specimen size has a significant influence on fracture toughness. It is thus essential to consider the transferability from fracture specimens in laboratory testing to practical structures, i.e., size effects or constraint effects. However, the specimen dimensions for SENT specimens recommended by current design procedures have not validated the out-of-plane constraint effect on the fracture toughness. In this work, the effect of specimen thickness on the crack tip opening displacement (CTOD) of SENT specimen was investigated using an API X90 grade steel. Full-field deformation measurement by digital image correlation (DIC) technique and stretching zone width (SZW) examination were performed to analyze the size effects on fracture toughness. The results show that the critical crack initiation toughness is highly sensitive to specimen thickness, and decreases significantly as specimen thickness increases until the thickness-to-width ratio (B/W) equals to 4, beyond which the effect of specimen thickness becomes relatively weak. As the specimen thickness increases, the maximum longitudinal strain and stretching zone width decrease sharply, and the location of high-strain zones changes significantly; when B/W≥3, strain is initiated from the area opposite the cracked side rather than from the crack tip, indicating a strong loss of plasticity for thicker specimens. A dimension size is recommended for the fracture toughness testing to take the out-of-plane constraint into account for SENT specimen.

Key wordsfracture toughness    out-of-plane constraint effect    single edge notch tension    integrity assessment
收稿日期: 2018-04-02     
ZTFLH:  TG407  
基金资助:国家自然科学基金项目No.51305295及国家重点研发计划项目No.2016YFC0802105
作者简介:

作者简介 李一哲,男,1992年生,博士生

图1  X90钢的应力-应变曲线
图2  进行断裂韧性实验的SENT试样
Specimen B / mm BN / mm W / mm a/W B/W H / mm
SENT-0.5 9 7.65 18 0.4 0.5 10W=180
SENT-1 18 15.3 18 0.4 1 10W=180
SENT-2 36 30.6 18 0.4 2 10W=180
SENT-3 54 45.9 18 0.4 3 10W=180
SENT-4 72 61.2 18 0.4 4 10W=180
SENT-6 108 91.8 18 0.4 6 10W=180
表1  X90管线钢单边缺口拉伸试样尺寸
图3  SENT试样的载荷-位移曲线
图4  不同厚度试样的裂纹扩展阻力曲线
图5  试样厚度对临界裂纹尖端张开位移(δC)的影响
图6  不同厚度SENT试样的纵向应变
图7  不同尺寸SENT试样的伸张区宽度(WSZW)
图8  不同尺寸SENT试样的钝化角(θSZW)
[1] British Standard Institution.Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London: British Standard Institution, 2007
[2] Paredes M, Ruggieri C.Further results in J and CTOD estimation procedures for SE(T) fracture specimens- Part II: Weld centerline cracks[J]. Eng. Fract. Mech., 2012, 89: 24
[3] Chen Y, Lambert S.Analysis of ductile tearing of pipeline-steel in single edge notch tension specimens[J]. Int. J. Fract., 2003, 124: 179
[4] Tang H, Macia M, Minnaar K, et al.Development of the SENT test for strain-based design of welded pipelines [A]. The 8th International Pipeline Conference[C]. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2010: 303
[5] Pisarski H G.Determination of pipe girth weld fracture toughness using SENT specimens [A]. The 8th International Pipeline Conference[C]. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2010: 217
[6] API 579. Recommended practice 579, for fitness-for-service[S]. Washington, DC: American Petroleum Institute, 2000
[7] BSI 7910. Guide on methods for assessing the acceptability of flaws in metallic structuresSI 7910. Guide on methods for assessing the acceptability of flaws in metallic structures[S]. London: British Standards Institution, 1999
[8] Wallin K.The size effect in KIC results[J]. Eng. Fract. Mech., 1985, 22: 149
[9] Yang J, Wang G Z, Xuan F Z, et al.Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain[J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
[10] Hebel J, Hohe J, Friedmann V, et al.Experimental and numerical analysis of in-plane and out-of-plane crack tip constraint characterization by secondary fracture parameters[J]. Int. J. Fract., 2007, 146: 173
[11] Sarzosa D F B, Ruggieri C. A numerical investigation of constraint effects in circumferentially cracked pipes and fracture specimens including ductile tearing [J]. Int. J. Press. Vessels Pip., 2014, 120-121: 1
[12] DNV-OS-F101. Submarine pipeline systems text version[S]. Norway: Det Norske Veritas, 2010
[13] BSI 8571 Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimens[S]. London: British Standards Institution, 2014
[14] Lu K, Meshii T.Three-dimensional T-stresses for three-point-bend specimens with large thickness variation[J]. Eng. Fract. Mech., 2014, 116: 197
[15] Shlyannikov V N, Boychenko N V, Tumanov A V, et al.The elastic and plastic constraint parameters for three-dimensional problems[J]. Eng. Fract. Mech., 2014, 127: 83
[16] Meshii T, Lu K, Fujiwara Y.Extended investigation of the test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region as a difference in the crack tip constraint—What is the loss of constraint in the TST effects on Jc ?[J]. Eng. Fract. Mech., 2015, 135: 286
[17] American Society for Testing and Materials. ASTM E1820-17 Standard test method for measurement of fracture toughness[S]. America: American Society for Testing and Materials, 2013
[18] Shen G W, Tyson W R, Gianetto J A, et al.Effect of side grooves on compliance, J-integral and constraint of a clamped SE(T) specimen [A]. ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference[C]. Bellevue, Washington, USA: Pressure Vessels and Piping Division, 2010: 81
[19] Li Y Z, Gong B M, Corrado M, et al. Experimental investigation of out-of-plane constraint effect on fracture toughness of the SE(T) specimens [J]. Int. J. Mech. Sci., 2017, 128-129: 644
[20] Verstraete M A, Hertelé S, Denys R M, et al.Evaluation and interpretation of ductile crack extension in SENT specimens using unloading compliance technique[J]. Eng. Fract. Mech., 2014, 115: 190
[21] Verstraete M A, Denys R M, Van Minnebruggen K, et al.Determination of CTOD resistance curves in side-grooved single-edge notched tensile specimens using full field deformation measurements[J]. Eng. Fract. Mech., 2013, 110: 12
[22] Moore P L, Pisarski H G.Validation of methods to determine CTOD from SENT specimens [A]. The 22nd International Ocean and Polar Engineering Conference[C]. Rodos Palace Hotel, Rhodes, Greece: ISOPE, 2012: 577
[23] Zhu X K, Zelenak P, McGaughy T. Comparative study of CTOD-resistance curve test methods for SENT specimens[J]. Eng. Fract. Mech., 2017, 172: 17
[24] Meshii T, Lu K, Takamura R.A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region[J]. Eng. Fract. Mech., 2013, 104: 184
[25] Bansal S, Nath S K, Ghosh P K, et al.Stretched zone width and blunting line equation for determination of initiation fracture toughness in low carbon highly ductile steels[J]. Int. J. Fract., 2009, 159: 43
[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[3] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[4] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[5] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[6] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[7] 毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[8] 孙茜,王晓南,章顺虎,杜林秀,邸洪双. 显微组织对新型热轧纳米析出强化钢断裂韧性的影响[J]. 金属学报, 2013, 49(12): 1501-1507.
[9] 贾晓娇 张军 苏海军 宋衎 刘林 傅恒志. 激光悬浮区熔Al2O3基共晶自生复合材料微观组织与力学性能[J]. 金属学报, 2012, 48(12): 1479-1486.
[10] 马跃 潘涛 江波 崔银会 苏航 彭云. S含量对高速车轮钢断裂韧性影响的研究[J]. 金属学报, 2011, 47(8): 978-983.
[11] 张欣 张金钰 刘刚 张国君 孙军. Cu/Nb纳米金属多层膜延性及断裂行为的尺寸效应[J]. 金属学报, 2011, 47(2): 246-250.
[12] 田野; 王毛球; 李金许; 时捷; 惠卫军; 董瀚 . 1500MPa级40CrNi3MoV钢的氢脆敏感性[J]. 金属学报, 2008, 44(4): 403-408 .
[13] 许泽建; 李玉龙; 李娜; 刘元镛 . 加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J]. 金属学报, 2006, 42(9): 965-970 .
[14] 陈祥; 李言祥; 符寒光 . 等温淬火高硅铸钢的断裂韧性[J]. 金属学报, 2005, 41(10): 1061-1065 .
[15] 王玉桂; 乔利杰; 高克玮; 宿彦京; 褚武扬; 王中林 . 单晶SnO2纳米带裂纹形核的临界应力和断裂韧性[J]. 金属学报, 2004, 40(6): 594-.