Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 660-672    DOI: 10.11900/0412.1961.2021.00117
  研究论文 本期目录 | 过刊浏览 |
高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能
陈扬, 毛萍莉(), 刘正, 王志, 曹耕晟
沈阳工业大学 材料科学与工程学院 辽宁省镁合金及其成型技术重点实验室 沈阳 110870
Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact
CHEN Yang, MAO Pingli(), LIU Zheng, WANG Zhi, CAO Gengsheng
Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
Yang CHEN, Pingli MAO, Zheng LIU, Zhi WANG, Gengsheng CAO. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. Acta Metall Sin, 2022, 58(5): 660-672.

全文: PDF(4382 KB)   HTML
摘要: 

为研究高应变速率冲击载荷下预压缩轧制态AZ31镁合金的退孪生行为与动态力学性能,将原始试样沿轧制方向(RD)进行真应变为4%的准静态预压缩,引入大量的{ 101¯2}拉伸孪晶。利用分离式Hopkinson压杆(SHPB)装置对原始及预压缩AZ31镁合金样品沿板材法向(ND)进行应变速率为700、1000、1300和1600 s-1的高速冲击实验,并利用EBSD技术对原始试样、预压缩试样以及不同应变速率下的冲击试样进行微观组织分析。结果表明,相比于原始试样,预压缩AZ31镁合金试样内的基面织构强度明显减弱并形成c轴与RD平行的孪晶织构,由于拉伸孪晶界对母晶粒的分割作用使得平均晶粒尺寸明显降低。预压缩AZ31镁合金试样沿ND高速冲击时的主要变形机制为退孪生,随着冲击应变速率的增大,孪晶织构逐渐恢复至初始的强基面织构,孪晶面积分数和孪晶平均厚度均逐渐降低,平均晶粒尺寸逐渐增大。此外,沿ND冲击原始试样相比于预压缩试样具有更高的强度和更低的塑性,且在塑性变形过程中预压缩试样呈现出更加明显的应变速率敏感性。

关键词 AZ31镁合金预压缩高速冲击退孪生    
Abstract

To investigate the detwinning behaviors and dynamic mechanical properties of a precompressed rolled AZ31 magnesium alloy sheet impacted under high strain rates, the as-received sheet was precompressed along the rolling direction (RD) to the true strain of 4% for inducing { 101¯2} tensile twins. The as-received and precompressed rolled AZ31 magnesium alloy sheets were impacted along the normal direction (ND) using a split Hopkinson pressure bar experiment apparatus at strain rates of 700, 1000, 1300, and 1600 s-1. Microstructural characteristics of the as-received, precompressed, and impacted specimens were analyzed and compared by an electron backscatter diffraction technology. The results show that in the precompressed specimen, the density of the basal texture was weakened and a new twin texture with the c-axis paralled to RD was formed. The average grain size of the precompressed specimen decreased visibly as a result of the parent grains being subdivided by tensile twin boundaries. The dominant deformation mechanism of the precompressed rolled AZ31 magnesium alloy impacted along ND is detwinning. With increasing the strain rate, the initial basal texture recovered, the average grain size increased, and the average twin thickness decreased. Compared with the precompressed specimen, the as-received specimen impacted along ND exhibited higher strength and lower formability. The precompressed specimen demonstrated greater strain rate sensitivity during plastic deformation.

Key wordsAZ31 magnesium alloy    precompression    high strain rate impact    detwinning
收稿日期: 2021-03-23     
ZTFLH:  TG146.2  
基金资助:辽宁省兴辽英才计划项目(XLYC1908006)
作者简介: 陈 扬,男,1986年生,博士生,高级工程师
图1  均匀化处理后轧制态AZ31镁合金板材的反极图、晶界图、晶粒尺寸分布图、{0001}极图和取向差角分布图
图2  沿轧制方向预压缩4%后轧制态AZ31镁合金板材的反极图、晶界图、{0001}极图、晶粒尺寸分布图和取向差角分布图
图3  图2a中矩形区域局部放大图及沿图3a中箭头方向的取向差角分布图
图4  预压缩轧制态AZ31镁合金沿法向(ND)冲击应变速率为700 s-1时的反极图、晶界图、晶粒尺寸分布图、{0001}极图和取向差角分布图
图5  预压缩轧制态AZ31镁合金沿ND冲击应变速率为1000 s-1时的反极图、晶界图、晶粒尺寸分布图、{0001}极图和取向差角分布图
图6  预压缩轧制态AZ31镁合金试样沿ND冲击应变速率为1300 s-1时的反极图、晶界图、晶粒尺寸分布图、{0001}极图和取向差角分布图
图7  预压缩轧制态AZ31镁合金试样沿ND冲击应变速率为1600 s-1时的反极图、晶界图、晶粒尺寸分布图、{0001}极图和取向差角分布图
图8  预压缩轧制态AZ31镁合金试样和经不同应变速率冲击试样内母晶粒中的孪晶数量分布图
图9  沿ND不同冲击应变速率下预压缩AZ31镁合金试样中残余拉伸孪晶面积分数和孪晶厚度
图10  原始及预压缩轧制态AZ31镁合金沿ND在不同冲击应变速率下的真应力-真应变曲线
Specimenε˙ = 700 s-1ε˙ = 1000 s-1ε˙ = 1300 s-1ε˙ = 1600 s-1
σsσpσsσpσsσpσsσp
As-received113.2345.6128.9419.7135.4458.6144.5498.1
Precompressed98.7228.1102.5348.8107.3415.2112.2488.8
表1  原始试样与预压缩AZ31镁合金试样沿ND在不同应变速率下冲击的屈服应力与峰值应力 (MPa)
Specimenε = 0.005ε = 0.01ε = 0.025ε = 0.05m¯
As-received0.2270.2690.2320.1660.224
Precompressed0.3010.1790.2950.4380.303
表2  应变速率为700和1600 s-1时原始试样与预压缩试样沿ND冲击的应变速率敏感指数
图11  退孪生晶粒取向变化示意图
1 Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2009, A523: 304
2 Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of { 10 1 ¯ 2 } twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
3 Shan Z W, Liu B Y. The mechanism of { 10 1 ¯ 2 } deformation twinning in magnesium [J]. Acta Metall. Sin., 2016, 52: 1267
3 单智伟, 刘博宇. Mg的{ 10 1 ¯ 2 }形变孪晶机制 [J]. 金属学报, 2016, 52: 1267
4 Li X D, Mao P L, Liu Y Y, et al. Anisotropy and deformation mechanisms of as-extruded Mg-3Zn-1Y magnesium alloy under high strain rates [J]. Acta Metall. Sin., 2018, 54: 557
4 李旭东, 毛萍莉, 刘晏宇 等. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制 [J]. 金属学报, 2018, 54: 557
doi: 10.11900/0412.1961.2017.00147
5 Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys [J]. Acta Mater., 2014, 81: 442
doi: 10.1016/j.actamat.2014.08.052
6 Lou C, Zhang X Y, Ren Y. Twinning characteristic of AZ31 magnesium alloy during dynamic plastic deformation [J]. Chin. J. Nonferrous Met., 2015, 25: 2642
6 娄 超, 张喜燕, 任 毅. 动态塑性变形下AZ31镁合金的孪生特征 [J]. 中国有色金属学报, 2015, 25: 2642
7 Wu W, Gao Y F, Li N, et al. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys [J]. Acta Mater., 2016, 121: 15
doi: 10.1016/j.actamat.2016.08.058
8 Huang H T, Godfrey A, Zheng J P, et al. Influence of local strain on twinning behavior during compression of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2015, A640: 330
9 Wang B S, Deng L P, Chapuis A, et al. Study of twinning behavior of AZ31 Mg alloy during plane strain compression [J]. Acta Metall. Sin., 2015, 51: 1441
9 汪炳叔, 邓丽萍, Chapuis A 等. AZ31镁合金在平面应变压缩过程中的孪生行为研究 [J]. 金属学报, 2015, 51: 1441
doi: 10.11900/0412.1961.2015.00215
10 Yan Y Q, Luo J R, Zhang J S, et al. Study on the microstructural evolution and mechanical properties control of a strong textured AZ31 magnesium alloy sheet during cryorolling [J]. Acta Metall. Sin., 2017, 53: 107
10 闫亚琼, 罗晋如, 张济山 等. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究 [J]. 金属学报, 2017, 53: 107
doi: 10.11900/0412.1961.2016.00134
11 Hong S G, Park S H, Lee C S. Role of { 10 1 ¯ 2 } twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58: 5873
doi: 10.1016/j.actamat.2010.07.002
12 Hou D W, Li Q Z, Wen H M. Study of reversible motion of { 10 1 ¯ 2 } tensile twin boundaries in a magnesium alloy during strain path changes [J]. Mater. Lett., 2018, 231: 84
doi: 10.1016/j.matlet.2018.08.019
13 Lee J U, Song S W, Kim Y, et al. Effects of { 10 1 ¯ 2 } twins on dynamic torsional properties of extruded AZ31 magnesium alloy [J]. Met. Mater. Int., 2018, 24: 283
doi: 10.1007/s12540-018-0030-x
14 Mokdad F, Chen D L, Li D Y. Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction [J]. J. Alloys Compd., 2018, 737: 549
doi: 10.1016/j.jallcom.2017.12.043
15 Chen H C, Liu T M, Hou D W, et al. Improving the mechanical properties of a hot-extruded AZ31 alloy by { 10 1 ¯ 2 } twinning lamella [J]. J. Alloys Compd., 2016, 680: 191
doi: 10.1016/j.jallcom.2016.04.106
16 Park S H, Hong S G, Lee J H, et al. Texture evolution of rolled Mg-3Al-1Zn alloy undergoing a { 10 1 ¯ 2 } twinning dominant strain path change [J]. J. Alloys Compd., 2015, 646: 573
doi: 10.1016/j.jallcom.2015.05.194
17 Long Z X, Liu T M, He J J, et al. The effects of pre-strain and subsequent annealing on the yielding behavior in a rolled magnesium alloy AZ31 [J]. J. Mater. Eng. Perform., 2015, 24: 16
doi: 10.1007/s11665-014-1284-1
18 Song B, Xin R L, Sun L Y, et al. Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment [J]. Mater. Sci. Eng., 2013, A582: 68
19 Sun Q, Xia T, Tan L, et al. Influence of { 10 1 ¯ 2 } twin characteristics on detwinning in Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2018, A735: 243
20 Sarker D, Friedman J, Chen D L. De-twinning and texture change in an extruded AM30 magnesium alloy during compression along normal direction [J]. J. Mater. Sci. Technol., 2015, 31: 264
doi: 10.1016/j.jmst.2014.11.018
21 Huang H T, Godfrey A, Liu W, et al. Study on twinning behaviors during multi-directional compression for AZ31 magnesium alloy by EBSD [J]. J. Chin. Electron Microsc. Soc., 2011, 30: 294
21 黄洪涛, Godfrey A, 刘 伟 等. 多向压缩路径下AZ31镁合金孪生行为的EBSD研究 [J]. 电子显微学报, 2011, 30: 294
22 Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and { 10 1 ¯ 2 } twin lamellar structure on the mechanical properties of Mg alloy [J]. Acta Metall. Sin., 2013, 49: 291
doi: 10.3724/SP.J.1037.2012.00582
22 娄 超, 张喜燕, 汪润红 等. 退孪生行为以及{ 10 1 ¯ 2 }孪晶片层结构对镁合金力学性能的影响 [J]. 金属学报, 2013, 49: 291
23 Proust G, Tomé C N, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 [J]. Int. J. Plast., 2009, 25: 861
doi: 10.1016/j.ijplas.2008.05.005
24 Wang R F, Mao P L, Liu Y Y, et al. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys [J]. Mater. Sci. Eng., 2018, A742: 309
25 Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
26 Guan D K, Rainforth W M, Gao J H, et al. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1—double twins [J]. Acta Mater., 2017, 135: 14
doi: 10.1016/j.actamat.2017.06.015
27 Wang X X, Mao P L, Wang R F, et al. Role of { 10 1 ¯ 2 } twinning in the anisotropy and asymmetry of AZ31 magnesium alloy under high strain rate deformation [J]. Mater. Sci. Eng., 2020, A772: 138814
28 Xiao J, Shu D W. Compressive behavior and constitutive analysis of AZ31B magnesium alloy over wide range of strain rates and temperatures [J]. Met. Mater. Int., 2015, 21: 823
doi: 10.1007/s12540-015-5120-4
29 Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression [J]. Trans. Mater. Heat Treat., 2013, 34(8): 26
29 张 愔, 刘天模, 徐 舜 等. 挤压态AZ31镁合金单向压缩过程中的退孪生行为 [J]. 材料热处理学报, 2013, 34(8): 26
30 Guo L L, Chen Z C, Gao L. Effects of grain size, texture and twinning on mechanical properties and work-hardening behavior of AZ31 magnesium alloys [J]. Mater. Sci. Eng., 2011, A528: 8537
31 Xi G Q, Chen Y, Chen S, et al. Study on twinning-detwinning behavior of magnesium alloy by Situ EBSD [J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2020, 34(9): 147
31 席国强, 陈 艺, 陈 爽 等. 镁合金中孪生-退孪生行为的原位EBSD研究 [J]. 重庆理工大学学报(自然科学版), 2020, 34(9): 147
32 Chen Y, Mao P L, Wang Z, et al. High strain rate deformation behaviors experimental study and numerical simulation of rolled AZ31 magnesium alloy loaded along different directions [J]. Chin. J. Nonferrous Met., 2020, 30: 997
32 陈 扬, 毛萍莉, 王志 等. 不同加载方向时轧制态AZ31镁合金高速变形行为的实验研究与数值模拟 [J]. 中国有色金属学报, 2020, 30: 997
[1] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[2] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[3] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[4] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[5] 白敬胜,卢秋虹,卢磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为*[J]. 金属学报, 2016, 52(4): 491-496.
[6] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
[7] 黄洪涛,Godfrey Andrew,刘伟,付宝勤,刘庆. 多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J]. 金属学报, 2013, 49(8): 932-938.
[8] 娄超,张喜燕,汪润红,段高林,刘庆. 退孪生行为以及{1012},孪晶片层结构对镁合金力学性能的影响[J]. 金属学报, 2013, 49(3): 291-296.
[9] 黄洪涛 Godfrey Andrew 刘伟 唐瑞鹤 刘庆. 样品取向对AZ31镁合金静态再结晶行为的影响[J]. 金属学报, 2012, 48(8): 915-921.
[10] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[11] 罗晋如,刘庆,刘伟,Godfrey Andrew. 轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响[J]. 金属学报, 2012, 48(6): 717-724.
[12] 罗晋如 刘庆 刘伟 Godfrey Andrew. AZ31镁合金板轧制过程中的{10-11}-{10-12}双孪生对板材显微组织、织构、力学性能的影响[J]. 金属学报, 2011, 47(12): 1567-1574.
[13] 王东 刘杰 肖伯律 马宗义. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能[J]. 金属学报, 2010, 46(5): 589-594.
[14] 高英俊 罗志荣 胡项英 黄创高. 相场方法模拟AZ31镁合金的静态再结晶过程[J]. 金属学报, 2010, 46(10): 1161-1172.
[15] 王丽娜 杨平 夏伟军 陈振华 陈鼎 李萧 孟利. 特殊成形工艺下AZ31镁合金的织构及变形机制[J]. 金属学报, 2009, 45(1): 58-62.