Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1567-1574    DOI: 10.3724/SP.J.1037.2011.00509
  论文 本期目录 | 过刊浏览 |
AZ31镁合金板轧制过程中的{10-11}-{10-12}双孪生对板材显微组织、织构、力学性能的影响
罗晋如1,刘庆1,2,刘伟1,Godfrey Andrew1
1. 清华大学材料科学与工程系, 北京 100084
2. 重庆大学材料科学与工程学院, 重庆 400044
THE EFFECT OF {10¯11}–{10¯12} DOUBLE TWINNING ON THE MICROSTRUCTURE, TEXTURE AND MECHANICAL PROPERTIES OF AZ31 MAGNESIUM ALLOY SHEET DURING ROLLING DEFORMATION
LUO Jinru 1, LIU Qing 1,2, LIU Wei 1, Godfrey Andrew 1
1) Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) School of Materials Science and Engineering, Chongqing University, Chongqing 400044
引用本文:

罗晋如 刘庆 刘伟 Godfrey Andrew. AZ31镁合金板轧制过程中的{10-11}-{10-12}双孪生对板材显微组织、织构、力学性能的影响[J]. 金属学报, 2011, 47(12): 1567-1574.

全文: PDF(1283 KB)  
摘要: 研究了在150和300 ℃温度下采用顺轧、交叉轧2种方式制备的4种AZ31镁合金轧制板材的显微组织、织构和单轴拉伸力学性能. 研究表明:{10-11}-{10-12}双孪晶是镁合金板轧制变形过程中的重要变形机制.变形温度的升高会抑制{10-11}-{10-12}双孪晶的产生. 轧制过程中,{10-11}-{10-12}双孪晶的变体选择机制与轧制方向有关, 进而对轧制板材的显微组织、织构及力学性能产生不同的影响.低温顺轧将使板材中的双孪晶平行排列, 板材的织构各向异性、单轴拉伸塑性各向异性增强; 而低温交叉轧将使板材中的孪晶分布杂乱,织构各向异性、单轴拉伸塑性各向异性均较顺轧板材减弱. 高温轧制板材中双孪晶较少,板材的织构各向异性和拉伸各向异性均较弱.
关键词 AZ31镁合金 轧制 {10-11}-{10-12}双孪晶 显微组织 织构    
Abstract:{10¯11}–{10¯12} double twin is the most common twin type being observed in the rolled AZ31 magnesium alloy, especially at low or moderate rolling temperature. Four types of rolled AZ31 magnesium alloy sheets were produced by rolling strong basal textured AZ31 plates at 150 ℃ and 300 ℃ respectively through different rolling paths by two passes till total reduction 17%. The rolling paths are normal and cross rolling respectively: the rolling directions of the two passes for normal rolling are mentally paralleled while perpendicular to each other for the cross rolling. Sheets are characterized in terms of microstructure and texture using optical microscope and scanning–electron microscope equipped with EBSD detector, and their mechanical performances are measured by uniaxial tensile tests at room temperature and a strain rate of 0.001 s−1. Tensile samples are cut parallel or perpendicular to the final rolling direction to obtain the mechanical anisotropies. The effects of the {10¯11}–{10¯12} double twins occurred during rolling onto the sheets the microstructure, texture and mechanical properties of the rolled sheets are discussed and related to each other. The results show that proportion of {10¯11}–{10¯12} double twins varies widely in different rolled sheets, which are determined by the rolling temperature. The twins in different rolled sheets are arranged in different ways. In the normal rolled sheets, the traces of twins are approximately perpendicular to the final rolling direction, while in the cross rolled sheets there are both traces of twins parallel and to the final directions. This phenomenon is related to the variant selection of twinning during rolling deformation. And the variant selection law is related to the rolling direction. For the same reason, the textures of twins in the rolled sheets produced through different paths are different. The textures of twins will add onto the bulks, and increases the textural difference between the bulks. The differences between mechanical properties of the rolled sheets are also related to the different textures and microstructures of the sheets caused by twins.
Key wordsAZ31 magnesium alloy    rolling    {10¯11}–{10¯12} double twin    microstructure    texture
收稿日期: 2011-08-08     
ZTFLH: 

TG335.12

 
基金资助:

国家重点基础研究发展计划资助项目2007CB613703

作者简介: 罗晋如, 女, 1984年生, 博士生
[1] Styczynski A, Hartig Ch, Bohlen J, Letzig D. Scr Mater,2004; 50: 943

[2] Al–Samman T, Gottstein G. Scr Mater, 2008; 59: 760

[3] Beausir B, Biswas S, Kim D I, Toth L S, Suwas S. Acta Mater, 2009; 57: 5061

[4] Chapuis A, Driver J H. Acta Mater, 2011; 59: 1986

[5] Hutchinson W B, Barnett M R. Scr Mater, 2010; 63: 737

[6] Yoshinaga H, Obara T, Morozumi S. Mater Sci Eng, 1973; 12: 255

[7] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 717

[8] Reed–Hill R E. Trans Metall Soc AIME, 1960; 28: 554

[9] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205

[10] Kim K H, Suh B C, Bae J H, Shim M S, Kim S, Kim N J. Scr Mater, 2010; 63: 716

[11] Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez–Martinez R. Acta Mater, 2011; 59: 429

[12] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 728

[13] Barneet M R. Mater Sci Eng, 2007; A464: 8

[14] Koike J, Fujiyama N, Ando D, Sutu Y. Scr Mater, 2010; 63: 747

[15] Ando D, Koike J, Sutou Y. Acta Mater, 2010; 58: 4316

[16] Cizek P, Barnett M R. Scr Mater, 2008; 59: 959

[17] Chino Y, Kimura K, Hakamada M, Mabuchi M. Mater Sci Eng, 2007; A485: 311

[18] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096

(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[19] Perez–Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 50: 667

[20] Jin L, Dong J, Wang R, Peng L M. Mater Sci Eng, 2010; A527: 1970

[21] Yi S, Schestakow I, Zaefferer S. Mater Sci Eng, 2009; A516: 58

[22] Li X, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[23] Martin E, Jonas J J. Acta Mater, 2010; 58: 4253

[24] Yu Z, Choo H. Scr Mater, 2011; 64: 434

[25] Li X, Al–Samman T, Gottstein G. Mater Des, 2011; 32: 4385

[26] Chen X, Shang D, Xiao R, Huang G, Liu Q. Trans Nonferrous Met Soc China, 2010; 20: s589

[27] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576

[28] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5

[29] Martin E, Capolungo L, Jiang L, Jonas J J. Acta Mater, 2010; 58: 3970

[30] Jonas J J, Mu S, Al–Samman T, Gottstein G, Jiang L, Martin E. Acta Mater, 2011; 59: 2046

[31] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303

(杨续跃, 张雷. 金属学报, 2009; 45: 1303)

[32] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277

[33] Liang S, Sun H, Liu Z, Wang E. J Alloys Compd, 2009; 472: 127

[34] HarttW H, Reed–Hill R E. Trans Matell Soc AIME, 1967; 239: 1511

[35] Ma Q, Kadiri H E, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813

[36] Mahajan S, Chin G Y. Acta Metall, 1973; 21: 173

[37] Mahajan S, Chin G Y. Acta Metall, 1974; 22: 1113

[38] Kadiri H E, Oppedal A L. J Mech Phys Solids, 2010; 58: 613

[39] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R. Acta Mater, 2010; 58: 6230
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.