Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00019
  论文 本期目录 | 过刊浏览 |
轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响
罗晋如1,刘庆2,刘伟1,Godfrey Andrew1
1. 清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084
2. 重庆大学材料科学与工程学院, 重庆 400044
INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS
LUO Jinru1, LIU Qing2, LIU Wei1, Godfrey Andrew1
1. Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University,Beijing 100084
2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044
引用本文:

罗晋如,刘庆,刘伟,Godfrey Andrew. 轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响[J]. 金属学报, 2012, 48(6): 717-724.
, , , . INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS[J]. Acta Metall Sin, 2012, 48(6): 717-724.

全文: PDF(5691 KB)  
摘要: 在150-350 ℃温区内不同温度下轧制AZ31镁合金板, 观察了不同温度下轧制变形量为9%的AZ31镁合金板材的显微组织, 研究分析了轧制温度对轧制板材中{1011}-{1012} 双孪晶的含量、类型以及高温轧制过程中双孪晶中的动态再结晶行为的影响, 讨论了板材中的孪晶对其力学性能的影响. 研究结果表明: 在150-300 ℃温区内轧制时,板材组织中均有含量不等的{1011}-{1012} 双孪晶,随着轧制温度的升高, 孪晶含量下降. 250 ℃以上轧制的板材中单片一次孪晶中出现的双孪晶类型较为单一, 仅出现共面型双孪晶.在250 ℃以上轧制板材中的双孪晶晶界处中可以观察到明显的动态再结晶现象, 这些动态再结晶晶粒对孪晶界和孪晶起到消除和吞噬的作用. 350 ℃下轧制的AZ31镁合金板材中未观察到{1011}-{1012双孪晶. 随着轧制温度的升高,镁合金轧制板材的强度减弱而塑性增强.
关键词 AZ31镁合金轧制温度{1011-{1012双孪晶再结晶    
Abstract:The most common manufacturing process for wrought magnesium alloy sheet is warm--rolling and the microstructure and properties of the product are strongly related with the rolling temperature. In particular, {1011}-{1012} double twinning is an important supplemental mechanism for the deformation of magnesium alloys during rolling at low or moderate temperatures. Therefore, the present work studies the microstructural variation of magnesium alloy sheets AZ31 rolled to 9% at different temperatures in the range of 150-350 ℃, and discusses the influence of rolling temperature on the quantity and variety of {1011}-{1012} double twins, as well as recrystallization related to the double twins. The mechanical properties of the rolled sheets and the influences of twins on the mechanical properties have also been discussed. The results show that {1011}-{1012} double twins are observed in the sheets rolled at temperature ranging from 150 to 300 ℃. The fraction of double twin per unit area, and the number of variant types within each primary twin, decreases with the increasing rolling temperature. At the temperature above 250 ℃, only co--planar double twins are observed in each primary twin. Recrystallized grains are observed to nucleate at the twin boundaries in the sheets rolled above 250 ℃, these can consume the twin boundaries and resulting in merging of the twin grains. No {1011}-{1012} twins are found in the AZ31 magnesium alloy sheet rolled at 350 ℃. With the increase of rolling temperature, the yield strength decreases and the ductile elongation increase for the rolled magnesium alloy sheet.
Key wordsAZ31 Mg alloy    rolling temperature    {1011}-{1012} double twin    recrystallization
收稿日期: 2012-01-09     
ZTFLH: 

TG335.12

 
基金资助:

国家重点基础研究发展计划资助项目2007CB613703

作者简介: 罗晋如, 女, 1984年生, 博士生
[1] Maksoud I A, Ahmed H, Rodel J.  Mater Sci Eng, 2009; A504: 40

[2] Jain A, Agnew S R.  Mater Sci Eng, 2007; A462: 29

[3] Watanabe H, Mukai T, Ishikawa K.  J Mater Process Technol,2007; 182: 644

[4] Cho J, Kim H, Kang S, Han T.  Acta Mater, 2011; 59: 5638

[5] Ji Y H, Park J J.  Mater Sci Eng, 2008; A485: 299

[6] Bruni C, Forcellese A, Gabrielli F, Simoncini M. J Mater Process Technol, 2010; 210: 1354

[7] Miao Q, Hu L, Wang G, Wang E.  Mater Sci Eng, 2011; A528: 6694

[8] Thirumurugan M, Kumaran S, Suwas S, Srinivasa R T. Mater Sci Eng, 2011; 528: 8460

[9] Beausir B, Biswas S, Kim D I, Toth L S, Suwas S. Acta Mater, 2009; 57: 5061

[10] Perez--Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661

[11] Liu Q.  Acta Metall Sin, 2010; 46: 1458

     (刘庆. 金属学报, 2010; 46: 1458)

[12] Chapuis A, Driver J H.  Acta Mater, 2011; 59: 1986

[13] Hutchinson W B, Barnett M R.  Scr Mater, 2010; 63: 737

[14] Yoshinaga H, Obara T, Morozumi S.  Mater Sci Eng, 1973; 12: 255

[15] Luo J R, Liu Q, Liu W, Godfrey A.  Acta Metall Sin, 2011; 47: 1567

     (罗晋如, 刘庆, 刘伟, Godfrey A. 金属学报, 2011; 47: 1567)

[16] Yang X Y, Jiang Y P.  Acta Metall Sin, 2010; 46: 451

     (杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[17] Barnett M R, Nave M D, Bettles C J.  Mater Sci Eng, 2004; A386: 205

[18] Reed--Hill R E.  Trans Metall Soc AIME, 1960; 28: 554

[19] Reed--Hill R E, Robertson W D.  Acta Metall, 1957; 5: 717

[20] Barnett M R, Nave M D, Bettles C J.  Mater Sci Eng, 2004; A386: 205

[21] Ando D, Koike J, Sutu Y.  Acta Mater, 2010; 58: 4316

[22] Tang W N, Chen R S, Han E H.  Acta Metall Sin, 2006; 42: 1096

     (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[23] Luo J R, Chen X P, Xin R L, Huang G J, Liu Q.  Trans Nonferrous Met Soc Chin, 2008; 18: s194

[24] Martin E, Jonas J J.  Acta Mater, 2010; 58: 4253

[25] Yang X Y, Sun Z Y, Zhang L.  Acta Metall Sin, 2010; 46: 607

     (杨续跃, 孙争艳, 张雷. 金属学报, 2010; 46: 607)

[26] Li X, Yang P, Meng L, Cui F E.  Acta Metall Sin, 2010; 46: 147

     (李萧, 杨平, 孟利, 崔凤娥. 金属学报, 2010; 46: 147)

[27] Luo J R, Godfrey A, Liu W, Liu Q.  Acta Mater, 2011; 60: 1986

[28] Martin E, Capolungo L, Jiang L, Jonas J J.  Acta Mater, 2010; 58: 3970

[29] Barnett M R, Keshavarz Z, Beer A G, Ma X.  Acta Mater, 2008; 56: 5

[30] Kim K H, Suh B C, Bae J H, Shim M S, Kim S, Kim N J.  Scr Mater,2010; 63: 716

[31] Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R. Acta Mater, 2011; 59: 429

[32] Yang P, Mao W M, Ren X P, Tang Q B.  Trans Nonferrous Met Soc Chin,2004; 14: 851

[33] Ion S E, Humphreys F J, White S H.  Acta Metall, 1982; 30: 1909

[34] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E.  Mater Sci Eng,2002; A337: 121

[35] Ma Q, Li B, Marin E B, Horstemeyer S J.  Scr Mater, 2011; 65: 823

[36] Ando D, Koike J, Sutou Y.  Acta Mater, 2010; 58: 4316

[37] Hartt W H, Reed--Hill R E.  Trans Metall Soc AIME, 1967; 239: 1511

[38] Ma Q, Kadiri H E, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813

[39] Luo J R, Godfrey A, Liu W, Liu Q.  Acta Mater, 2012; 60: 1986

[40] Mahajan S, Chin G Y.  Acta Metall, 1973; 21: 173

[41] Mahajan S, Chin G Y.  Acta Metall, 1974; 22: 1113
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[9] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[12] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[13] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[14] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.