Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00019
  论文 本期目录 | 过刊浏览 |
轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响
罗晋如1,刘庆2,刘伟1,Godfrey Andrew1
1. 清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084
2. 重庆大学材料科学与工程学院, 重庆 400044
INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS
LUO Jinru1, LIU Qing2, LIU Wei1, Godfrey Andrew1
1. Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University,Beijing 100084
2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044
全文: PDF(5691 KB)  
摘要: 在150-350 ℃温区内不同温度下轧制AZ31镁合金板, 观察了不同温度下轧制变形量为9%的AZ31镁合金板材的显微组织, 研究分析了轧制温度对轧制板材中{1011}-{1012} 双孪晶的含量、类型以及高温轧制过程中双孪晶中的动态再结晶行为的影响, 讨论了板材中的孪晶对其力学性能的影响. 研究结果表明: 在150-300 ℃温区内轧制时,板材组织中均有含量不等的{1011}-{1012} 双孪晶,随着轧制温度的升高, 孪晶含量下降. 250 ℃以上轧制的板材中单片一次孪晶中出现的双孪晶类型较为单一, 仅出现共面型双孪晶.在250 ℃以上轧制板材中的双孪晶晶界处中可以观察到明显的动态再结晶现象, 这些动态再结晶晶粒对孪晶界和孪晶起到消除和吞噬的作用. 350 ℃下轧制的AZ31镁合金板材中未观察到{1011}-{1012双孪晶. 随着轧制温度的升高,镁合金轧制板材的强度减弱而塑性增强.
关键词 AZ31镁合金轧制温度{1011-{1012双孪晶再结晶    
Abstract:The most common manufacturing process for wrought magnesium alloy sheet is warm--rolling and the microstructure and properties of the product are strongly related with the rolling temperature. In particular, {1011}-{1012} double twinning is an important supplemental mechanism for the deformation of magnesium alloys during rolling at low or moderate temperatures. Therefore, the present work studies the microstructural variation of magnesium alloy sheets AZ31 rolled to 9% at different temperatures in the range of 150-350 ℃, and discusses the influence of rolling temperature on the quantity and variety of {1011}-{1012} double twins, as well as recrystallization related to the double twins. The mechanical properties of the rolled sheets and the influences of twins on the mechanical properties have also been discussed. The results show that {1011}-{1012} double twins are observed in the sheets rolled at temperature ranging from 150 to 300 ℃. The fraction of double twin per unit area, and the number of variant types within each primary twin, decreases with the increasing rolling temperature. At the temperature above 250 ℃, only co--planar double twins are observed in each primary twin. Recrystallized grains are observed to nucleate at the twin boundaries in the sheets rolled above 250 ℃, these can consume the twin boundaries and resulting in merging of the twin grains. No {1011}-{1012} twins are found in the AZ31 magnesium alloy sheet rolled at 350 ℃. With the increase of rolling temperature, the yield strength decreases and the ductile elongation increase for the rolled magnesium alloy sheet.
Key wordsAZ31 Mg alloy    rolling temperature    {1011}-{1012} double twin    recrystallization
收稿日期: 2012-01-09     
ZTFLH: 

TG335.12

 
基金资助:

国家重点基础研究发展计划资助项目2007CB613703

通讯作者: 刘庆     E-mail: qingliu@cqu.edu.cn
Corresponding author: Qing LIU     E-mail: qingliu@cqu.edu.cn
作者简介: 罗晋如, 女, 1984年生, 博士生

引用本文:

罗晋如,刘庆,刘伟,Godfrey Andrew. 轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响[J]. 金属学报, 2012, 48(6): 717-724.
LUO Jin-Ru, LIU Qiang, LIU Wei. INFLUENCE OF ROLLING TEMPERATURE ON THE {1011}-{1012} TWINNING IN ROLLED AZ31 MAGNESIUM ALLOY SHEETS. Acta Metall Sin, 2012, 48(6): 717-724.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00019      或      https://www.ams.org.cn/CN/Y2012/V48/I6/717

[1] Maksoud I A, Ahmed H, Rodel J.  Mater Sci Eng, 2009; A504: 40

[2] Jain A, Agnew S R.  Mater Sci Eng, 2007; A462: 29

[3] Watanabe H, Mukai T, Ishikawa K.  J Mater Process Technol,2007; 182: 644

[4] Cho J, Kim H, Kang S, Han T.  Acta Mater, 2011; 59: 5638

[5] Ji Y H, Park J J.  Mater Sci Eng, 2008; A485: 299

[6] Bruni C, Forcellese A, Gabrielli F, Simoncini M. J Mater Process Technol, 2010; 210: 1354

[7] Miao Q, Hu L, Wang G, Wang E.  Mater Sci Eng, 2011; A528: 6694

[8] Thirumurugan M, Kumaran S, Suwas S, Srinivasa R T. Mater Sci Eng, 2011; 528: 8460

[9] Beausir B, Biswas S, Kim D I, Toth L S, Suwas S. Acta Mater, 2009; 57: 5061

[10] Perez--Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661

[11] Liu Q.  Acta Metall Sin, 2010; 46: 1458

     (刘庆. 金属学报, 2010; 46: 1458)

[12] Chapuis A, Driver J H.  Acta Mater, 2011; 59: 1986

[13] Hutchinson W B, Barnett M R.  Scr Mater, 2010; 63: 737

[14] Yoshinaga H, Obara T, Morozumi S.  Mater Sci Eng, 1973; 12: 255

[15] Luo J R, Liu Q, Liu W, Godfrey A.  Acta Metall Sin, 2011; 47: 1567

     (罗晋如, 刘庆, 刘伟, Godfrey A. 金属学报, 2011; 47: 1567)

[16] Yang X Y, Jiang Y P.  Acta Metall Sin, 2010; 46: 451

     (杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[17] Barnett M R, Nave M D, Bettles C J.  Mater Sci Eng, 2004; A386: 205

[18] Reed--Hill R E.  Trans Metall Soc AIME, 1960; 28: 554

[19] Reed--Hill R E, Robertson W D.  Acta Metall, 1957; 5: 717

[20] Barnett M R, Nave M D, Bettles C J.  Mater Sci Eng, 2004; A386: 205

[21] Ando D, Koike J, Sutu Y.  Acta Mater, 2010; 58: 4316

[22] Tang W N, Chen R S, Han E H.  Acta Metall Sin, 2006; 42: 1096

     (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[23] Luo J R, Chen X P, Xin R L, Huang G J, Liu Q.  Trans Nonferrous Met Soc Chin, 2008; 18: s194

[24] Martin E, Jonas J J.  Acta Mater, 2010; 58: 4253

[25] Yang X Y, Sun Z Y, Zhang L.  Acta Metall Sin, 2010; 46: 607

     (杨续跃, 孙争艳, 张雷. 金属学报, 2010; 46: 607)

[26] Li X, Yang P, Meng L, Cui F E.  Acta Metall Sin, 2010; 46: 147

     (李萧, 杨平, 孟利, 崔凤娥. 金属学报, 2010; 46: 147)

[27] Luo J R, Godfrey A, Liu W, Liu Q.  Acta Mater, 2011; 60: 1986

[28] Martin E, Capolungo L, Jiang L, Jonas J J.  Acta Mater, 2010; 58: 3970

[29] Barnett M R, Keshavarz Z, Beer A G, Ma X.  Acta Mater, 2008; 56: 5

[30] Kim K H, Suh B C, Bae J H, Shim M S, Kim S, Kim N J.  Scr Mater,2010; 63: 716

[31] Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R. Acta Mater, 2011; 59: 429

[32] Yang P, Mao W M, Ren X P, Tang Q B.  Trans Nonferrous Met Soc Chin,2004; 14: 851

[33] Ion S E, Humphreys F J, White S H.  Acta Metall, 1982; 30: 1909

[34] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E.  Mater Sci Eng,2002; A337: 121

[35] Ma Q, Li B, Marin E B, Horstemeyer S J.  Scr Mater, 2011; 65: 823

[36] Ando D, Koike J, Sutou Y.  Acta Mater, 2010; 58: 4316

[37] Hartt W H, Reed--Hill R E.  Trans Metall Soc AIME, 1967; 239: 1511

[38] Ma Q, Kadiri H E, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813

[39] Luo J R, Godfrey A, Liu W, Liu Q.  Acta Mater, 2012; 60: 1986

[40] Mahajan S, Chin G Y.  Acta Metall, 1973; 21: 173

[41] Mahajan S, Chin G Y.  Acta Metall, 1974; 22: 1113
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[4] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[5] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[6] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[7] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[8] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[9] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[10] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[11] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[12] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[13] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
[14] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[15] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.