Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1545-1556    DOI: 10.11900/0412.1961.2021.00145
  研究论文 本期目录 | 过刊浏览 |
热轧硅钢表层动态再结晶区形成规律及剪切织构特征
姜伟宁1, 武晓龙1, 杨平1(), 顾新福1, 解清阁2
1.北京科技大学 材料科学与工程学院 北京 100083
2.北京科技大学 钢铁共性技术协同创新中心 北京 100083
Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel
JIANG Weining1, WU Xiaolong1, YANG Ping1(), GU Xinfu1, XIE Qingge2
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
Weining JIANG, Xiaolong WU, Ping YANG, Xinfu GU, Qingge XIE. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. Acta Metall Sin, 2022, 58(12): 1545-1556.

全文: PDF(4545 KB)   HTML
摘要: 

将具有柱状晶组织的Fe-2.5Si-0.8Al硅钢铸坯进行了多道次热轧,利用EBSD技术研究表层动态再结晶区的形成规律及剪切织构特征,并确定细晶区内不同剪切取向的分布规律。结果表明,88%压下量下热轧板次表层形成了明显的水平带状动态再结晶细晶区,动态再结晶区被多种剪切取向形变晶粒包围。热轧时,次表层受到较大的剪切力使铜型织构更易出现,造成动态再结晶区内再结晶及附近形变的铜型织构组分均多于黄铜型和Goss剪切织构组分。过大的剪切作用不利于Goss织构的形成和保持,导致动态再结晶区内Goss织构组分的比例很少。黄铜型织构出现在动态再结晶区内及附近的比例相差不大,说明黄铜型织构的形成位置不受限制。在此基础上,将实验室热轧板与98.9%压下量的工业热轧板表层剪切织构进行对比,工业热轧板次表层至接近中心层(次表层与中心层之间位置) Goss织构组分最多。

关键词 硅钢柱状晶剪切织构动态再结晶热轧    
Abstract

The texture and microstructure varying between thicknesses of hot-rolled sheets can be inherited to the final recrystallized sheets in silicon steel and affect its magnetic properties. Deformed and dynamic recrystallized microstructures produced in the surface layers during hot rolling bring different shear textures. Based on the study of deformed shear textures in the surface layers of hot-rolled sheets, it is necessary to examine the shear textures in the dynamic recrystallization zone. The cast slabs of Fe-2.5Si-0.8Al silicon steels with columnar grains are hot rolled in multiple passes. This study investigates the formation of dynamic recrystallization zone and characteristics of shear texture using EBSD technique. Consequently, the distribution of different shear textures in the fine grain region is obtained. The results indicate that the dynamic recrystallization zone in the horizontal band appears in the subsurface layer; simultaneously, it is surrounded by deformed grains with different shear textures in hot-rolled sheets with 88% reduction. A Copper texture component easily appears in the sub-surface layer and becomes more than Goss and Brass texture components in dynamic recrystallization zone and the surrounding deformed matrix when subjected to heavy shearing. The Goss texture is weak in the dynamic recrystallization zone. This is because excessive shearing is harmful to the formation and retention of Goss texture. The proportion of Brass texture in the dynamic recrystallization zone is the same as that in the surrounding deformed matrix. Additionally, the shear textures of the laboratory hot-rolled sheets and the industrial hot-rolled sheets with 98.9% reduction are compared. In the industrial hot-rolled sheets, the Goss texture is most from the subsurface to the center layer (in the position between subsurface and center layers).

Key wordssilicon steel    columnar grain    shear texture    dynamic recrystallization    hot rolling
收稿日期: 2021-04-07     
ZTFLH:  TG124.1  
基金资助:国家自然科学基金项目(51931002)
作者简介: 姜伟宁,男,1997年生,硕士生
图1  52%、71%和88%热轧压下量下时Fe-2.5Si-0.8Al硅钢显微组织的OM像
图2  88%压下量时Fe-2.5Si-0.8Al热轧板半厚侧面的EBSD分析
Texture typeDynamic recrystallization grainDeformation grain
VPVP
Goss0.216.865.8727.61
Brass1.3845.107.2734.20
Copper1.4748.048.1238.19
表1  动态再结晶晶粒(晶粒尺寸12~30 μm)和形变晶粒(晶粒尺寸> 30 μm)中3种剪切织构组分的体积分数及其在剪切织构中的比例
图3  88%热轧压下量Fe-2.5Si-0.8Al样品全厚侧面区域1的EBSD分析
图4  88%热轧压下量Fe-2.5Si-0.8Al样品全厚侧面区域2的EBSD分析
图5  88%热轧压下量Fe-2.5Si-0.8Al样品全厚侧面区域3的EBSD分析
图6  88%热轧压下量Fe-2.5Si-0.8Al样品全厚侧面区域4的EBSD分析
图7  88%热轧压下量Fe-2.5Si-0.8Al样品全厚侧面区域5的EBSD分析
图8  不同压下量Fe-2.5Si-0.8Al热轧板中形变剪切织构组分体积分数变化
图9  2.5 mm厚1.6%Si硅钢工业热轧板不同厚度位置的IPF图及ODF
图10  2.5 mm厚1.6%Si硅钢工业热轧板不同厚度位置3种剪切织构组分体积分数
1 Calvillo P R, Salazar N, Schneider J, et al. Microstructure characterization by EBSD of hot rolled high-silicon steel [J]. Defect Diffus. Forum, 2008, 273-276: 69
doi: 10.4028/www.scientific.net/DDF.273-276.69
2 Stöcker A, Schmidtchen M, Kawalla R. Hot rolling simulation for non-oriented electrical steel [J]. AIP Conf. Proc., 2017, 1896: 190021
3 Wu X L, Yang P, Gu X F, et al. The influence of normalization temperatures on different texture components and magnetic properties of nonoriented electrical steels [J]. Steel. Res. Int., 2021, 92: 2000361
4 Inagaki H, Suda T. The development of rolling textures in low-carbon steels [J]. Texture, Stress, Microstr., 1972, 1: 612480
5 Koh P K, Dunn C G. Cold-rolled textures of silicon-iron crystals [J]. JOM, 1955, 7(2): 401
doi: 10.1007/BF03377518
6 Zhang N, Yang P, He C X, et al. Effect of {110}<229> and {110}<112> grains on texture evolution during cold rolling and annealing of electrical steel [J]. ISIJ Int., 2016, 56: 1462
doi: 10.2355/isijinternational.ISIJINT-2016-145
7 Shao Y Y, Yang P, Mao W M. Analysis on grain boundary effects of columnar grained electrical steel [J]. Acta Metall. Sin., 2014, 50: 259
doi: 10.3724/SP.J.1037.2013.00459
7 邵媛媛, 杨平, 毛卫民. 电工钢柱状晶热、冷轧时晶界作用分析 [J]. 金属学报, 2014, 50: 259
doi: 10.3724/SP.J.1037.2013.00459
8 Matsuo M, Sakai T, Suga Y. Origin and development of through-the-thickness variations of texture in the processing of grain-oriented silicon steel [J]. Metall. Trans., 1986, 17A: 1313
9 Yang P, Shao Y Y, Mao W M, et al. Orientation evolutions during hot rolling of electrical steel containing initial columnar grains [J]. Mater. Sci. Forum, 2012, 702-703: 754
doi: 10.4028/www.scientific.net/MSF.702-703.754
10 Shao Y Y, Yang P, Fu Y J, et al. Texture evolution of columnar grains in electrical steel during hot rolling [J]. J. Iron Steel Res. Int., 2013, 20: 99
11 Fedoseev A I, Raabe D, Gottstein G. Texture development and simulation of inhomogeneous deformation of FeCr during hot rolling [J]. Mater. Sci. Forum, 1994, 157-162: 1771
doi: 10.4028/www.scientific.net/MSF.157-162.1771
12 Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling [J]. Metall. Trans., 1986, 17A: 1323
13 Cruz-Gandarilla F, Baudin T, Penelle R, et al. Study of local microstructure and texture heterogeneities in hot rolled CGO Fe-3%Si sheets [J]. Mater. Sci. Forum, 2004, 467-470: 123
doi: 10.4028/www.scientific.net/MSF.467-470.123
14 Cruz-Gandarilla F, Penelle R, León H M, et al. A study of local microstructure and texture heterogeneities in a CGO Fe3%Si alloy from hot rolling to primary recrystallization [J]. Mater. Sci. Forum, 2005, 495-497: 483
doi: 10.4028/www.scientific.net/MSF.495-497.483
15 Cruz-Gandarilla F, Baudin T, Mathon M H, et al. Characterization of global and local textures in hot rolled CGO Fe3%Si [J]. Mater. Sci. Forum, 2006, 509: 25
doi: 10.4028/www.scientific.net/MSF.509.25
16 Lobanov M L, Redikul'tsev A A, Rusakov G M, et al. Effect of carbon on texture formation in electrical steel Fe-3% Si under hot rolling [J]. Metal Sci. Heat Treat., 2015, 56: 646
doi: 10.1007/s11041-015-9815-4
17 Mehdi M, He Y L, Hilinski E J, et al. The origins of the Goss orientation in non-oriented electrical steel and the evolution of the Goss texture during thermomechanical processing [J]. Steel Res. Int., 2019, 90: 1800582
18 Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels [J]. Acta Metall. Sin., 2012, 48: 16
doi: 10.3724/SP.J.1037.2011.00421
18 颜孟奇, 钱浩, 杨平 等. 电工钢中黄铜织构行为及其对Goss织构的影响 [J]. 金属学报, 2012, 48: 16
doi: 10.3724/SP.J.1037.2011.00421
19 Mukhopadhyay A, Howard I C, Sellars C M. Finite element modelling of effects of roll gap geometry in hot rolling [J]. Mater. Sci. Technol., 2005, 21: 901
doi: 10.1179/174328405X47546
20 Jia M X, Lü Y P, Xu L F, et al. The influence of friction on the texture formation of a IF steel during hot rolling in the ferrite region [J]. Steel Res. Int., 2013, 84: 761
doi: 10.1002/srin.201200260
21 Jiang W N, Wu X L, Yang P, et al. Relationship between the initial {100} textures and the shear textures developed in sheet surface during hot rolling of non-oriented silicon steel [J]. Mater. Charact., 2021, 182: 111534
22 Calvillo P R, Reis A C C, Kestens L, et al. Grain refinement by high temperature plane-strain compression of Fe-2%Si steel [J]. Mater. Sci. Forum, 2006, 503-504: 977
doi: 10.4028/www.scientific.net/MSF.503-504.977
23 Tsuji N, Tsuzaki K, Maki T. Effects of rolling reduction and annealing temperature on the recrystallization structure of solidified columnar crystals in a 19% Cr ferritic stainless steel [J]. ISIJ Int., 1994, 34: 1008
doi: 10.2355/isijinternational.34.1008
24 Hsun H. Microbands in a rolled Si-Fe crystal and their role in recrystallization [J]. Acta Metall., 1962, 10: 1112
doi: 10.1016/0001-6160(62)90083-4
25 Yan M Q, Yang P, Jiang Q W, et al. Influence of rolling direction on the texture evolution of Fe-3%Si alloy [J]. Acta Metall. Sin., 2011, 47: 25
25 颜孟奇, 杨平, 蒋奇武 等. 轧制方向对Fe-3%Si合金织构演变规律的影响 [J]. 金属学报, 2011, 47: 25
doi: 10.3724/SP.J.1037.2010.00432
26 Wada T, Matsumoto F, Kuroki K. On the recrystallization of 3%Si-Fe (001)[110] single crystal [J]. J. Jpn. Inst. Met., 1968, 32: 767
doi: 10.2320/jinstmet1952.32.8_767
27 Li Z C, Yang P, Yan M Q, et al. Evolution of microstructure and textures of {100} initial texture in an electrical steel [J]. Chin. J. Stereol. Image. Anal., 2009, 14: 237
27 李志超, 杨平, 颜孟奇 等. 电工钢中{100}织构的演变规律 [J]. 中国体视学与图像分析, 2009, 14: 237
28 Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J]. Acta. Mater., 2003, 51: 3037
doi: 10.1016/S1359-6454(03)00115-0
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[6] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[9] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[14] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.