Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1519-1526    DOI: 10.11900/0412.1961.2022.00354
  研究论文 本期目录 | 过刊浏览 |
高强高韧异质结构温轧TWIP
胡晨1,2, 潘帅1,3, 黄明欣1,2()
1.香港大学 机械工程系 香港 999077
2.香港大学 深圳研究院 深圳 518057
3.南方科技大学 机械与能源工程系 深圳 518055
Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling
HU Chen1,2, PAN Shuai1,3, HUANG Mingxin1,2()
1.Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
2.Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
引用本文:

胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP钢[J]. 金属学报, 2022, 58(11): 1519-1526.
Chen HU, Shuai PAN, Mingxin HUANG. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. Acta Metall Sin, 2022, 58(11): 1519-1526.

全文: PDF(4203 KB)   HTML
摘要: 

通过简单的温轧工艺,制备出高屈服强度(1250 MPa)、高延伸率(24%)和高断裂韧性(KJIC为125 MPa·m1/2)的部分再结晶TWIP钢。相比于热轧和冷轧钢,温轧TWIP钢的微观组织具有异质结构特征,即包含高密度位错和孪晶的形变粗晶晶粒以及几乎无缺陷的再结晶细晶。形变粗晶提供高屈服强度,再结晶晶粒提供大的塑性变形能力,从而在拉伸实验中具有优异的加工硬化率。与此同时,在断裂韧性测试中的裂纹扩展过程中,再结晶晶粒能使裂纹尖端钝化和裂纹偏折,提高其断裂韧性。这种温轧产生的异质结构TWIP钢同时取得了高屈服强度和高韧性的优异性能组合。

关键词 TWIP钢温轧部分再结晶断裂韧性异质结构异构变形强化    
Abstract

Twinning-induced plasticity (TWIP) steel has received significant research attention because of its superior mechanical properties, including uniform elongation, ultimate tensile strength, and fracture toughness. However, it has a relatively low yield stress, which limits its industrial application. Increasing the dislocation density has been proved to be an effective method for enhancing the yield stress. In this work, a simple warm rolling (WR) route was applied at 700oC to manufacture partially recrystallized TWIP steel with a high yield stress (1250 MPa), good total elongation (24%), and exceptional fracture toughness (KJIC of approximately 125 MPa·m1/2). The steel manufactured using WR was characterized using SEM, EBSD, and TEM at different length scales. Compared to the steel microstructure obtained after hot rolling or cold rolling (CR), this WR TWIP steel exhibits a distinct heterogeneous structure. The matrix has numerous dislocations with twinned coarse grains (approximately 75%) and nearly defect-free recrystallized fine grains (approximately 25%), which form during the reheating period of the WR process. The in situ tensile tests of the WR and CR steels show that the deformed coarse grains provide high yield stress with negligible deformation, whereas the recrystallized fine grains can undergo considerable plastic deformation, which results in a good work hardening capacity during tensile deformation. The fracture toughness tests of the compact tension (C(T)) samples indicate that the recrystallized grains in the WR steel can enhance the crack tip blunting and deflect cracks, which enhance the crack-growth resistance. Alternatively, these toughening mechanisms are not observed in the homogeneous CR steel. Therefore, this heterogeneous structure, which is induced by the high temperature WR process, provides the TWIP steel with excellent strength and toughness.

Key wordsTWIP steel    warm rolling    partial recrystallization    fracture toughness    heterogeneous structure    hetero-deformation induced strengthening
收稿日期: 2022-07-25     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52130102);国家重点研发计划项目(2019YFA0209900);香港研究资助局项目(R7066-18);广州市科学技术局项目(202007020007);广东省基础与应用基础研究专项基金项目(2020B1515130007)
作者简介: 胡 晨,男,1995年生,博士生
图1  Hetero-T和Homo-T的反极图、相图及孪晶界面、晶粒取向差图
图2  Hetero-T和Homo-T的明、暗场TEM像、SAED花样,以及再结晶晶粒的STEM像
图3  Homo-T和Hetero-T的工程应力-应变曲线、加载-卸载-再加载迟滞环、J-R曲线、Hetero-T和Homo-T的拉伸断口像
SampleJIC / (kJ·m-2)KJIC / (MPa·m1/2)J1mm / (kJ·m-2)KJ1mm / (MPa·m1/2)
Hetero-T71.3125.2163.9189.8
Homo-T45.7100.273.4127.0
表1  Hetero-T和Homo-T的断裂韧性
图4  Hetero-T和Homo-T的变形前反极图,应变0、4%和12%的KAM分布图,全区域KAM随应变的变化及低应变(白色虚线框)区域内的变化
图5  Hetero-T和Homo-T的裂纹尖端及裂纹扩展路径BSE像
1 Luo Z C, Liu R D, Wang X, et al. The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels [J]. Acta Mater., 2018, 150: 59
doi: 10.1016/j.actamat.2018.03.004
2 Tian Y Z, Bai Y, Zhao L J, et al. A novel ultrafine-grained Fe-22Mn-0.6C TWIP steel with superior strength and ductility [J]. Mater. Charact., 2017, 126: 74
doi: 10.1016/j.matchar.2016.12.026
3 Luo Z C, Huang M X. Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels [J]. Scr. Mater., 2018, 142: 28
doi: 10.1016/j.scriptamat.2017.08.017
4 Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel [J]. Scr. Mater., 2016, 112: 28
doi: 10.1016/j.scriptamat.2015.09.003
5 Zhou P, Liang Z Y, Liu R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel [J]. Acta Mater., 2016, 111: 96
doi: 10.1016/j.actamat.2016.03.057
6 Li Y Z, Liang Z Y, Huang M X. Strengthening contributions of dislocations and twins in warm-rolled TWIP steels [J]. Int. J. Plast., 2022, 150: 103198
doi: 10.1016/j.ijplas.2021.103198
7 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
8 Xiong L, You Z S, Lu L. Enhancing fracture toughness of nanotwinned austenitic steel by thermal annealing [J]. Scr. Mater., 2016, 119: 55
doi: 10.1016/j.scriptamat.2016.03.024
9 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
10 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
11 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
12 Baik S I, Ahn T Y, Hong W P, et al. In situ observations of transgranular crack propagation in high-manganese steel [J]. Scr. Mater., 2015, 100: 32
doi: 10.1016/j.scriptamat.2014.12.005
13 Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
doi: 10.1016/j.actamat.2017.09.026
14 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
15 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
16 Guo F J, Wang Y F, Wang M S, et al. Hetero-deformation induced strengthening and toughening of pure iron with inverse and multi-gradient structures [J]. Mater. Sci. Eng., 2020, A782: 139256
17 Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376
doi: 10.1016/j.mtla.2019.100376
18 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
19 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
20 Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
21 Garcia-mateo C, Caballero F G. Ultra-high-strength bainitic steels [J]. ISIJ Int., 2005, 45: 1736
doi: 10.2355/isijinternational.45.1736
22 Pawel J E, Alexander D J, Grossbeck M L, et al. Fracture toughness of candidate materials for ITER first wall, blanket, and shield structures [J]. J. Nucl. Mater., 1994, 212-215: 442
doi: 10.1016/0022-3115(94)90101-5
23 Linaza M A, Romero J L, Rodríguez-Ibabe J M, et al. Improvement of fracture toughness of forging steels microalloyed with titanium by accelerated cooling after hot working [J]. Scr. Metall. Mater., 1993, 29: 1217
doi: 10.1016/0956-716X(93)90112-6
24 He Y, Yang K, Qu W S, et al. Strengthening and toughening of a 2800-MPa grade maraging steel [J]. Mater. Lett., 2002, 56: 763
doi: 10.1016/S0167-577X(02)00610-9
25 Bayram A, Uǧuz A, Ula M. Effects of microstructure and notches on the mechanical properties of dual-phase steels [J]. Mater. Charact., 1999, 43: 259
doi: 10.1016/S1044-5803(99)00044-3
26 Cao Z H, Zhang B N, Huang M X. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade [J]. J. Mater. Sci. Technol., 2022, 124: 109
doi: 10.1016/j.jmst.2022.02.020
27 Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels [J]. Metall. Mater. Trans., 2014, 45A: 1892
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[4] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[7] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[8] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[9] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[10] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[11] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[12] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
[13] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[14] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[15] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.