Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 549-558    DOI: 10.11900/0412.1961.2016.00316
  论文 本期目录 | 过刊浏览 |
中厚板表层超细晶对止裂性能的影响
马江南1,王瑞珍2(),杨才福2,查小琴1,张利娟1
1 洛阳船舶材料研究所 洛阳 471023
2 钢铁研究总院工程用钢所 北京 100081
Effect of Surface Layer with Ultrafine Grains on Crack Arrestability of Heavy Plate
Jiangnan MA1,Ruizhen WANG2(),Caifu YANG2,Xiaoqin ZHA1,Lijuan ZHANG1
1 Luoyang Ship Material Research Institute, Luoyang 471023, China
2 Department of Engineering Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
Jiangnan MA, Ruizhen WANG, Caifu YANG, Xiaoqin ZHA, Lijuan ZHANG. Effect of Surface Layer with Ultrafine Grains on Crack Arrestability of Heavy Plate[J]. Acta Metall Sin, 2017, 53(5): 549-558.

全文: PDF(10594 KB)   HTML
摘要: 

研究了返温轧制(TRRP)中厚钢板表层的组织特征及其对止裂性能的影响。力学性能测试结果表明,与传统的控轧控冷(TMCP)钢相比,TRRP钢表层的韧、塑性较好,韧脆转变温度低至-100 ℃,而在1/4厚度处,两者性能差异不大。显微组织分析表明,TRRP钢表层组织为等轴状铁素体晶粒+弥散分布的马氏体-奥氏体(M-A)组元,晶粒等效直径约2 μm。通过数值模拟分析了TRRP工艺中间坯温度场的变化,发现中间坯冷却时,表层被冷却到相变温度以下,形成以贝氏体为主的组织,返温后轧制,表层组织发生动态再结晶形成超细晶。示波冲击测试表明,TRRP钢表层试样启裂后,载荷-位移曲线斜率绝对值(|k|)由0.66降低到0.27,与止裂相关的冲击吸收功达到44.3 J,断口表层组织有明显的塑性变形,吸收了裂纹扩展的能量,有效地抑制了裂纹扩展。晶粒取向分析表明,TRRP钢表层超细晶粒取向呈随机分布,晶界角度平均值和大角度晶界(>15°)比例分别达到32.8°和69.8%,能够有效阻碍裂纹扩展。使用纳米压痕分析了实验钢的硬度,TRRP钢表层的纳米压痕硬度统计分布集中在2.0 GPa以下,组织特征为少量的硬质相弥散分布在较软的铁素体基体上,相界面处萌生的裂纹在基体中不易扩展。

关键词 中厚板返温轧制表层超细晶止裂示波冲击    
Abstract

Temperature reverting rolling process (TRRP) is a newly developed technology for producing heavy steel plate with ultrafine grained surface layer. With hybrid structures along thickness direction, TRRP steel plate has excellent fracture toughness with crack arrestability which arouses interest recently. However, the crack arrest mechanism of the surface layer is still unclear to date. In this work, two types of steel plate produced by TRRP and traditional thermo mechanical control process (TMCP) were studied in order to get a comprehensive understanding of the crack arrest mechanism. The mechanical property tests demonstrate that the toughness of surface layer of TRRP steel is significantly higher than that of TMCP steel, while the mechanical properties at 1/4 thickness position of the two types are quite close. It's worth noting that ductile-brittle transition temperature of the TRRP steel surface layer is as low as -100 ℃. Microstructure analysis of the TRRP surface layer shows a coexistence of equiaxed ferrite grains with grain sizes of about 2 μm and dispersed M-A constituent. Numerical simulation of the temperature field of TRRP intermediate slab reveals the microstructure forming process. First, the surface layer is cooled lower than phase transformation temperature, which results in the generation of bainite ferrite. Subsequently, dynamic recrystallization of ferrite takes place in rolling process and leads to the formation of ultrafine grains. Instrumental impact test at -60 ℃ shows that the crack propagation of TRRP steel is effectively inhibited after a steady developing stage. The morphological analysis of the cross section of fracture shows significant plastic deformation in the surface layer, which means crack propagation energy is absorbed. As a result, the crack propagation is efficiently arrested. The statistical study of the grain orientations in the surface layer of TRRP steel indicates a randomly distribution of the ultrafine grains, which can hinder the crack propagation effectively. The nano indentation test shows that the hardness distributions of TRRP steel are mainly below 2.0 GPa. This means the microstructure is characterized by a small amount of hard phase dispersing in soft matrix, thus the crack initiated at the interface of phases can hardly propagate.

Key wordsheavy plate    temperature-reverting rolling process    surface layer with ultrafine grain    crack arrest    instrumental impact
收稿日期: 2016-07-20     
图1  返温轧制(TRRP)钢的OM像
图2  TRRP钢和控轧控冷(TMCP)钢的SEM像
Steel Rm / MPa Rel / MPa A / %
Surface t/4 Surface t/4 Surface t/4
TRRP 621 600 545 520 21.0 25.5
TMCP 652 610 609 545 13.0 25.5
表1  TRRP钢和TMCP钢表层和t/4处的拉伸性能
图3  TRRP钢和TMCP钢表层冲击吸收功随温度的变化
图4  TRRP钢中间坯水冷返温过程不同厚度位置的组织相变过程
图5  TRRP钢中间坯在水冷结束时厚度方向的温度分布
图6  TRRP钢表层、TMCP钢表层和TMCP钢t/2处-60 ℃的示波冲击曲线
图7  TRRP钢表层、TMCP钢表层和TMCP钢t/2处示波冲击断口形貌
图8  TRRP钢和TMCP钢表层组织的反极图取向成像图
图9  TRRP钢和TMCP钢表层组织的取向分布图
图10  TRRP钢和TMCP钢表层组织的取向成像图和取向差分布图
图11  TRRP钢和TMCP钢表层的纳米压痕SEM像
图12  TRRP钢和TMCP钢表层纳米压痕硬度统计分布图
图13  TMCP钢-140 ℃ Charpy冲击断口截面上的二次裂纹
[1] Weng Y Q, Yang C F, Shang C J.State-of-the-art and development trends of HSLA steels in China[J]. Iron Steel, 2011, 46(9): 1
[1] (翁宇庆, 杨才福, 尚成嘉. 低合金钢在中国的发展现状与趋势[J]. 钢铁, 2011, 46(9): 1)
[2] Komizo Y I.Status & prospects of shipbuilding steel and its weldability[J]. Trans. JWRI, 2007, 36: 1
[3] Ishikawa T, Nomiyama Y, Yoshikawa H, et al.Ultra-high crack-arresting steel plate (HIAREST) with super-refined grains in surface layers[J]. Nippon Steel Tech. Rep., 1997, 75(11): 31
[4] Yao L D, Li Z G, Zhang P J.Research on ultra-fine grain and ultra-high toughness steel plate[J]. Iron Steel Vanadium Titanium, 2005, 26(1): 20
[4] (姚连登, 李自刚, 张丕军. 超细晶粒及超高韧性厚板的研究[J]. 钢铁钒钛, 2005, 26(1): 20)
[5] Mabuchi H, Hasegawa T, Ishikawa T.Metallurgical features of steel plates with ultra fine grains in surface layers and their formation mechanism[J]. ISIJ Int., 1999, 39: 477
[6] Zhao S X, Yao L D, Zhao X T.Development of heavy plate with ultra fine grained surface layer[J]. World Iron Steel, 2009, (5): 18
[6] (赵四新, 姚连登, 赵小婷. 表层超细晶厚钢板的研制[J]. 世界钢铁, 2009, (5): 18)
[7] Du H J, Li C, Zhao D W, et al.Development of Nb microalloyed low carbon steel plate with ultra-fine grains in surface layer[J]. J. Mech. Eng., 2011, 47(2): 58
[7] (杜海军, 栗春, 赵德文等. Nb微合金低碳钢表层超细晶中厚板的研制[J]. 机械工程学报, 2011, 47(2): 58)
[8] Ma J N, Yang C F, Wang R Z.Microstructure transformation and ferrite dynamic recrystallization behavior of microalloyed steel during temperature-reversion deforming[J]. J. Mater. Eng., 2015, 43(11): 24(马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为 [J]. 材料工程, 2015, 43(11): 24)
[9] Ishikawa T, Mabuchi H, Hasegawa T, et al.High crack arrestability-endowed steel plate with surface-layer of ultra fine grain microstructure[J]. Tetsu Hagané, 1999, 85: 544
[9] (石川忠, 間渕秀里, 長谷川俊永など. 脆性き裂伝播停止性能の優れた表層超細粒鋼板[J]. 鉄と鋼, 1999, 85: 544)
[10] He Q Z, Li Z N.Engineering Fracture Mechanics [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1993: 55(何庆芝, 郦正能. 工程断裂力学 [M]. 北京: 北京航空航天大学出版社, 1993: 55)
[11] Ma J N, Yang C F, Wang R Z.Numerical simulation of temperature field and experiment during temperature-reverting rolling process of heavy steel plate[J]. Trans. Mater. Heat Treat., 2015, 36(3): 220
[11] (马江南, 杨才福, 王瑞珍. 中厚钢板回温轧制温度场的数值模拟和试验[J]. 材料热处理学报, 2015, 36(3): 220)
[12] Wang R Z, Lei T C.Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in the (F+A) two-phase range[J]. Scr. Metall. Mater., 1994, 31: 1193
[13] Hales S J, Mcnelley T R.Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy[J]. Acta Metall., 1988, 36: 1229
[14] Yang C F, Zhang Y Q, Liu T J.Low temperature impact fracture behavior of 10Ni5CrMoV steel[J]. Dev. Appl. Mater., 1997, 12(6): 2
[14] (杨才福, 张永权, 刘天军. 10Ni5CrMoV钢低温冲击断裂行为研究[J]. 材料开发与应用, 1997, 12(6): 2)
[15] Liu D Y, Xu H, Yang K, et al.Effect of bainite/martensite mixed microstructure on the strength and toughness of low carbon alloy steels[J]. Acta Metall. Sin., 2004, 40: 882
[15] (刘东雨, 徐鸿, 杨昆等. 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响[J]. 金属学报, 2004, 40: 882)
[16] Zhang Y Q, Liu T J, Yang C F.Effect of melting methods on low temperature brittleness of steel 10CrSiNiCu[J]. J. Iron Steel Res., 1998, 10(5): 36
[16] (张永权, 刘天军, 杨才福. 不同冶炼方法对10CrSiNiCu钢低温脆性的影响[J]. 钢铁研究学报, 1998, 10(5): 36)
[17] Liu D S, Cheng B G, Luo M.Microstructure and impact fracture behaviour of HAZ of F460 heavy ship plate with high strength and toughness[J]. Acta Metall. Sin., 2011, 47: 1233
[17] (刘东升, 程丙贵, 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47: 1233)
[18] Hashemi S H.Apportion of Charpy energy in API 5L grade X70 pipeline steel[J]. Int. J. Pressure Vessels Piping, 2008, 85: 879
[19] Deng W, Gao X H, Qin X M, et al.Impact fracture behavior of X80 pipeline steel[J]. Acta Metall. Sin., 2010, 46: 533
[19] (邓伟, 高秀华, 秦小梅等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46: 533)
[20] Liu D S, Cheng B G, Luo M.Effect of heat-treatment processes on microstructure and properties of a NV-F690 shipbuilding plate steel[J]. Trans. Mater. Heat Treat., 2011, 32(9): 125
[20] (刘东升, 程丙贵, 罗咪. 热处理工艺对NV-F690船板钢组织和性能的影响[J]. 材料热处理学报, 2011, 32(9): 125)
[21] Yang P, Fu Y Y, Cui F E, et al.Orientational inspection of ferrite grains during strain enhanced transformation in plain carbon steel Q235[J]. Acta Metall. Sin., 2001, 37: 900
[21] (杨平, 傅云义, 崔凤娥等. Q235碳素钢应变强化相变过程中铁素体晶粒取向分析[J]. 金属学报, 2001, 37: 900)
[22] Lv Q G, Chen G N, Zhou J C, et al.Textures in hot rolled steel sheet[J]. Iron Steel Vanadium Titanium, 2001, 22(2): 1
[22] (吕庆功, 陈光南, 周家琮等. 热轧钢板的织构[J]. 钢铁钒钛, 2001, 22(2): 1)
[23] Liu D S, Cheng B G, Luo M.F460 heavy steel plates for offshore structure and shipbuilding produced by thermomechanical control process[J]. ISIJ Int., 2011, 51: 603
[24] Gao G H, Zhang H, Bai B Z.Effect of tempering temperature on low temperature impact toughness of a low carbon Mn-series bainitic steel[J]. Acta Metall. Sin., 2011, 47: 513
[24] (高古辉, 张寒, 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47: 513)
[25] Liu D S, Li Q L, Emi T.Microstructure and mechanical properties in hot-rolled extra high-yield-strength steel plates for offshore structure and shipbuilding[J]. Metall. Mater. Trans., 2011, 42A: 1349
[26] Liu Z X, Li D Z, Qiao G W.Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel[J]. Acta Metall. Sin., 2005, 41: 1127
[26] (刘朝霞, 李殿中, 乔桂文. 低碳钢在Ae3温度之上的形变诱导铁素体(一种马氏体)的相变研究[J]. 金属学报, 2005, 41: 1127)
[1] 邓天勇 吴迪 许云波 赵彦峰 刘相华 王国栋. 普碳钢中厚板热轧温度制定的一种新的数学方法[J]. 金属学报, 2009, 45(1): 67-72.
[2] 刘东雨; 徐鸿; 杨昆; 白秉哲; 方鸿生 . 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响[J]. 金属学报, 2004, 40(8): 0-886 .
[3] 高殿奎; 付宇明; 白象忠 . GCr15凹模淬火裂纹止裂处的显微组织分析[J]. 金属学报, 2001, 37(2): 135-138 .
[4] 朱平;陈丙森. 系列示波冲击断口三维形貌几何特征和断裂性能[J]. 金属学报, 1998, 34(1): 63-69.
[5] 张进之;李生智;王廷溥. 中厚板轧制稳定性条件的理论计算与实践验证[J]. 金属学报, 1992, 28(4): 68-72.
[6] 黄正;姚枚. 低碳钢冷脆特征温度的研究[J]. 金属学报, 1990, 26(2): 31-36.
[7] 浩宏奇;宋余九. 低合金高强度钢在盐雾介质中的疲劳裂纹扩展行为[J]. 金属学报, 1989, 25(1): 150-152.