|
|
激光增材制造过程中循环热输入对组织和性能的影响 |
王迪1, 黄锦辉1, 谭超林1,2( ), 杨永强1 |
1.华南理工大学 机械与汽车工程学院 广州 510640 2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore |
|
Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing |
WANG Di1, HUANG Jinhui1, TAN Chaolin1,2( ), YANG Yongqiang1 |
1.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore |
引用本文:
王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
Di WANG,
Jinhui HUANG,
Chaolin TAN,
Yongqiang YANG.
Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. Acta Metall Sin, 2022, 58(10): 1221-1235.
1 |
Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelect. Prog., 2018, 55(1): 011401
|
1 |
杨永强, 陈 杰, 宋长辉 等. 金属零件激光选区熔化技术的现状及进展 [J]. 激光与光电子学进展, 2018, 55(1): 011401
|
2 |
Zheng B, Haley J C, Yang N, et al. On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition [J]. Mater. Sci. Eng., 2019, A764: 138243
|
3 |
Tan C L, Chew Y X, Bi G J, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72: 217
doi: 10.1016/j.jmst.2020.07.044
|
4 |
Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
doi: 10.1016/j.matdes.2017.08.026
|
5 |
Uhlmann E, Bergmann A, Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting [J]. Procedia CIRP, 2015, 35: 8
doi: 10.1016/j.procir.2015.08.060
|
6 |
Chen L Q, Yao X L, Xu P, et al. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning [J]. Virtual Phys. Prototy., 2021, 16: 50
doi: 10.1080/17452759.2020.1832695
|
7 |
Wolff S J, Lin S, Faierson E J, et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V [J]. Acta Mater., 2017, 132: 106
doi: 10.1016/j.actamat.2017.04.027
|
8 |
Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7
pmid: 32393778
|
9 |
De La Batut B, Fergani O, Brotan V, et al. Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V [J]. J. Manuf. Mater. Process., 2017, 1: 3
|
10 |
Promoppatum P, Yao S C, Pistorius P C, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion [J]. Engineering, 2017, 3: 685
doi: 10.1016/J.ENG.2017.05.023
|
11 |
Short A, McCartney D G, Webb P, et al. Parametric envelopes for keyhole plasma arc welding of a titanium alloys [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine Mountain: ASM International, 2008: 690
|
12 |
Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser [J]. Opt. Laser Technol., 2014, 63: 154
doi: 10.1016/j.optlastec.2014.04.016
|
13 |
Schiller S, Heisig U, Panzer S. Electron Beam Technology [M]. New York: Wiley, 1982: 1
|
14 |
Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process [J]. Mater. Sci. Technol., 2015, 31: 924
doi: 10.1179/1743284714Y.0000000701
|
15 |
Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. J. Appl. Phys., 2014, 116: 124905
doi: 10.1063/1.4896751
|
16 |
Kürnsteiner P, Bajaj P, Gupta A, et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys [J]. Addit. Manuf., 2020, 32: 100910
|
17 |
Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
|
18 |
Han L J, Liou F W, Musti S. Thermal behavior and geometry model of melt pool in laser material process [J]. J. Heat Transfer., 2005, 127: 1005
doi: 10.1115/1.2005275
|
19 |
Tan C L, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
doi: 10.1080/14686996.2018.1455154
|
20 |
Wang L, Felicelli S. Analysis of thermal phenomena in LENS™ deposition [J]. Mater. Sci. Eng., 2006, A435-436: 625
|
21 |
Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
|
22 |
Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts [J]. Phys. Procedia, 2016, 83: 882
doi: 10.1016/j.phpro.2016.08.092
|
23 |
Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
|
24 |
Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
|
25 |
Chen L, Richter B, Zhang X Z, et al. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, A802: 140579
|
26 |
Chen H Y, Gu D D, Ge Q, et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing [J]. Int. J. Miner. Metall. Mater., 2021, 28: 462
doi: 10.1007/s12613-020-2133-x
|
27 |
Parry L A, Ashcroft I A, Wildman R D. Geometrical effects on residual stress in selective laser melting [J]. Addit. Manuf., 2019, 25: 166
doi: 10.1016/j.addma.2018.09.026
|
28 |
Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification [J]. JOM, 2017, 69: 439
doi: 10.1007/s11837-017-2265-2
|
29 |
Yang J J, Han J, Yu H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy [J]. Mater. Des., 2016, 110: 558
doi: 10.1016/j.matdes.2016.08.036
|
30 |
King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J]. J. Mater. Process. Technol., 2014, 214: 2915
doi: 10.1016/j.jmatprotec.2014.06.005
|
31 |
Zhao M H. Study on thermal behavior and microstructure of H13 tool steel fabricated by laser additive manufacturing [D]. Beijing: Beijing University of Chemical Technology, 2020
|
31 |
赵明皇. 激光增材制造H13工具钢热行为及微观结构研究 [D]. 北京: 北京化工大学, 2020
|
32 |
Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
|
32 |
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
|
33 |
Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process [J]. Optik, 2020, 208: 164128
doi: 10.1016/j.ijleo.2019.164128
|
34 |
Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 68
|
34 |
陈德宁, 刘婷婷, 廖文和 等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 68
|
35 |
Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): A review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
doi: 10.1007/s00170-021-06810-3
|
36 |
Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components [J]. Addit. Manuf., 2020, 36
|
37 |
Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
|
38 |
Ulbricht A, Altenburg S J, Sprengel M, et al. Separation of the formation mechanisms of residual stresses in LPBF 316L [J]. Metals, 2020, 10: 1234
doi: 10.3390/met10091234
|
39 |
Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting [D]. Beijing: Tsinghua University, 2016
|
39 |
周 鑫. 激光选区熔化微尺度熔池特性与凝固微观组织 [D]. 北京: 清华大学, 2016
|
40 |
Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
|
41 |
Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
41 |
谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
42 |
Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
|
42 |
白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018
|
43 |
Pegues J, Roach M, Scott Williamson R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 543
doi: 10.1016/j.ijfatigue.2018.07.013
|
44 |
Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
|
44 |
谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019
|
45 |
Deng G W, Tan C L, Wang D, et al. Defects suppression and mechanism in additive manufacturing high-volume SiC reinforced maraging steel [J]. J. Mech. Eng., 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
|
45 |
邓国威, 谭超林, 王 迪 等. 增材制造高体积陶瓷增强马氏体钢缺陷抑制与机理研究 [J]. 机械工程学报, 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
|
46 |
Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
doi: 10.1016/j.matdes.2017.04.094
|
47 |
Mohr G, Altenburg S J, Hilgenberg K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion [J]. Addit. Manuf., 2020, 32: 101080
|
48 |
Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis [J]. Acta Mater., 2005, 53: 3987
doi: 10.1016/j.actamat.2005.05.003
|
49 |
Jendrzejewski R, Śliwiński G. Investigation of temperature and stress fields in laser cladded coatings [J]. Appl. Surf. Sci., 2007, 254: 921
doi: 10.1016/j.apsusc.2007.08.014
|
50 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
51 |
Amirabdollahian S, Deirmina F, Harris L, et al. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition [J]. Scr. Mater., 2021, 201: 113973
doi: 10.1016/j.scriptamat.2021.113973
|
52 |
Nezhadfar P D, Shamsaei N, Phan N. Enhancing ductility and fatigue strength of additively manufactured metallic materials by preheating the build platform [J]. Fatigue Fract. Eng. Mater. Struct., 2021, 44: 257
doi: 10.1111/ffe.13372
|
53 |
Luo X P, Zhao M H, Li J Y, et al. Numerical study on thermodynamic behavior during selective laser melting of 24CrNiMo alloy steel [J]. Materials, 2020, 13: 45
doi: 10.3390/ma13010045
|
54 |
Zumofen L, Kirchheim A, Dennig H J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties [J]. Prog. Addit. Manuf., 2020, 5: 75
doi: 10.1007/s40964-020-00121-x
|
55 |
Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
|
56 |
Xue A T, Lin X, Wang L L, et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition [J]. Scr. Mater., 2021, 205: 114180
doi: 10.1016/j.scriptamat.2021.114180
|
57 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
|
58 |
Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating [J]. J. Manuf. Sci. Eng., 2014, 136: 061026
|
59 |
Chen H Y, Gu D D, Dai D H, et al. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting [J]. Mater. Lett., 2018, 227: 128
doi: 10.1016/j.matlet.2018.05.042
|
60 |
Zhang J, Yu M J, Li Z Y, et al. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting [J]. J. Alloys Compd., 2021, 856: 158168
doi: 10.1016/j.jallcom.2020.158168
|
61 |
Chen X, Qiu C L. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy [J]. Sci. Rep., 2020, 10: 15870
doi: 10.1038/s41598-020-72627-x
pmid: 32985532
|
62 |
Jing G Y, Huang W P, Yang H H, et al. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48: 44
doi: 10.1016/j.jmst.2019.12.020
|
63 |
Tan C L, Chew Y W, Weng F, et al. Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment [J]. Virtual Phys. Prototyping, 2021, 16: 460
doi: 10.1080/17452759.2021.1964268
|
64 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
doi: 10.1016/j.actamat.2017.02.069
|
65 |
Jägle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
doi: 10.1007/s11837-015-1764-2
|
66 |
Barriobero-Vila P, Gussone J, Haubrich J, et al. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments [J]. Materials, 2017, 10: 268
doi: 10.3390/ma10030268
|
67 |
Ma Y. The microstructure transformation of selective laser melting processed TC4 at different heights [J]. Appl. Laser, 2020, 40(5):790
|
67 |
马 尧. SLM成形TC4钛合金不同高度处微观组织演变 [J]. 应用激光, 2020, 40(5): 790
|
68 |
Yan J J, Zheng D L, Li H X, et al. Selective laser melting of H13: Microstructure and residual stress [J]. J. Mater. Sci., 2017, 52: 12476
doi: 10.1007/s10853-017-1380-3
|
69 |
Damon J, Koch R, Kaiser D, et al. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140 [J]. Addit. Manuf., 2019, 28: 275
|
70 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
70 |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
71 |
Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components [J]. Appl. Mater. Today, 2019, 14: 59
doi: 10.1016/j.apmt.2018.11.003
|
72 |
Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
|
73 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
|
74 |
Dutta B, Froes F. Additive manufacturing technology [A]. Additive Manufacturing of Titanium Alloys [M]. Amsterdam: Elsevier, 2016: 25
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|