Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1221-1235    DOI: 10.11900/0412.1961.2021.00310
  综述 本期目录 | 过刊浏览 |
激光增材制造过程中循环热输入对组织和性能的影响
王迪1, 黄锦辉1, 谭超林1,2(), 杨永强1
1.华南理工大学 机械与汽车工程学院 广州 510640
2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore
Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing
WANG Di1, HUANG Jinhui1, TAN Chaolin1,2(), YANG Yongqiang1
1.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore
引用本文:

王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
Di WANG, Jinhui HUANG, Chaolin TAN, Yongqiang YANG. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. Acta Metall Sin, 2022, 58(10): 1221-1235.

全文: PDF(4450 KB)   HTML
摘要: 

激光增材制造(LAM)中逐层沉积形成独特的循环热输入,能对沉积材料产生原位热处理(IHT)效应,具有调整微观结构和提高材料力学性能的潜力。本文针对LAM中循环热输入现象进行了详细阐述,分析了工艺参数、沉积方向、层间延时、基板预热、激光重熔等对循环热输入的影响行为。不同的循环热输入能对晶粒取向、相组成、第二相析出等微观组织产生明显的影响,进而影响其力学性能。循环热输入产生的IHT效应,为改善材料性能和研发新材料提供了契机。因此本文提出了理解和建立成分-工艺-IHT效应-组织结构-力学性能之间关系的理论,进而为基于IHT效应的LAM专用新材料的研究和发展提供启示。

关键词 激光增材制造循环热输入原位热处理各向异性新材料研发    
Abstract

The unique cyclic thermal input in laser additive manufacturing (LAM) induced by layerwise deposition manner has been one of the hot research topics. This technique has shed light on the potential of using intrinsic heat treatment (IHT) to tune microstructures and enhance the mechanical performance of materials. Therefore, this article elaborates on cyclic thermal input in LAM. Herein, the influence of process parameters, deposition direction, interlayer delay time, substrate preheating, and laser remelting on cyclic thermal input was reviewed in detail. One of our key findings was that the cyclic thermal input can significantly affect the microstructures such as grain orientation, phase composition, and second phase precipitation, which in turn affects the mechanical properties of materials. The IHT effect generated by cyclic thermal input provides an opportunity for material performance enhancement and new materials development. Hence, the understanding of internal relationships among composition-process-IHT effect-microstructures-mechanical properties is critical. This is not only essential for material performance enhancement through tailoring of IHT effect but also provides enlightenment for the research and development of LAM-specific new materials based on IHT effect.

Key wordslaser additive manufacturing    cyclic thermal input    intrinsic heat treatment    anisotropy    new materials development
收稿日期: 2021-07-29     
ZTFLH:  TG655  
基金资助:国家自然科学基金项目(52005189);国家重点研发计划项目(2021YFE0203500);广东省基础与应用基础研究项目(2019A1515110542);广东省基础与应用基础研究项目(2022B1515020064)
作者简介: 王 迪,男,1986年生,教授,博士
图1  粉末床激光熔融(LPBF)成型系统和加工过程参数示意图[4,5]
图2  激光直接能量沉积(LDED)系统示意图[6,7]
图3  激光增材制造过程中多尺度、多物理过程示意图[8],及影响循环热输入的主要因素
图4  熔池温度场示意图[5]及金属沉积过程底部和顶部时间-温度关系曲线[16]
图5  循环热输入对LAM成型材料力学性能的影响[21~25]
图6  常见的激光扫描策略及扫描策略对组织织构的影响[40]
图7  原位析出强化和局部微观结构控制工艺原理[50,51]
图8  残余应力形成示意图,及预热温度对晶粒生长的影响[55]
图9  300M钢LPBF过程中微观组织演变示意图[62],及基于原位回火效应获得优异力学性能的AISI 420[63]
图10  IHT效应对微观组织的影响[4,16,64,65]
图11  理解和利用LAM独特热输入行为进行专用新材料的研发路线展望[5,65,71~74]
1 Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelect. Prog., 2018, 55(1): 011401
1 杨永强, 陈 杰, 宋长辉 等. 金属零件激光选区熔化技术的现状及进展 [J]. 激光与光电子学进展, 2018, 55(1): 011401
2 Zheng B, Haley J C, Yang N, et al. On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition [J]. Mater. Sci. Eng., 2019, A764: 138243
3 Tan C L, Chew Y X, Bi G J, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72: 217
doi: 10.1016/j.jmst.2020.07.044
4 Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
doi: 10.1016/j.matdes.2017.08.026
5 Uhlmann E, Bergmann A, Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting [J]. Procedia CIRP, 2015, 35: 8
doi: 10.1016/j.procir.2015.08.060
6 Chen L Q, Yao X L, Xu P, et al. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning [J]. Virtual Phys. Prototy., 2021, 16: 50
doi: 10.1080/17452759.2020.1832695
7 Wolff S J, Lin S, Faierson E J, et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V [J]. Acta Mater., 2017, 132: 106
doi: 10.1016/j.actamat.2017.04.027
8 Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7 pmid: 32393778
9 De La Batut B, Fergani O, Brotan V, et al. Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V [J]. J. Manuf. Mater. Process., 2017, 1: 3
10 Promoppatum P, Yao S C, Pistorius P C, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion [J]. Engineering, 2017, 3: 685
doi: 10.1016/J.ENG.2017.05.023
11 Short A, McCartney D G, Webb P, et al. Parametric envelopes for keyhole plasma arc welding of a titanium alloys [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine Mountain: ASM International, 2008: 690
12 Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser [J]. Opt. Laser Technol., 2014, 63: 154
doi: 10.1016/j.optlastec.2014.04.016
13 Schiller S, Heisig U, Panzer S. Electron Beam Technology [M]. New York: Wiley, 1982: 1
14 Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process [J]. Mater. Sci. Technol., 2015, 31: 924
doi: 10.1179/1743284714Y.0000000701
15 Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. J. Appl. Phys., 2014, 116: 124905
doi: 10.1063/1.4896751
16 Kürnsteiner P, Bajaj P, Gupta A, et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys [J]. Addit. Manuf., 2020, 32: 100910
17 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
18 Han L J, Liou F W, Musti S. Thermal behavior and geometry model of melt pool in laser material process [J]. J. Heat Transfer., 2005, 127: 1005
doi: 10.1115/1.2005275
19 Tan C L, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
doi: 10.1080/14686996.2018.1455154
20 Wang L, Felicelli S. Analysis of thermal phenomena in LENS™ deposition [J]. Mater. Sci. Eng., 2006, A435-436: 625
21 Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
22 Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts [J]. Phys. Procedia, 2016, 83: 882
doi: 10.1016/j.phpro.2016.08.092
23 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
24 Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
25 Chen L, Richter B, Zhang X Z, et al. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, A802: 140579
26 Chen H Y, Gu D D, Ge Q, et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing [J]. Int. J. Miner. Metall. Mater., 2021, 28: 462
doi: 10.1007/s12613-020-2133-x
27 Parry L A, Ashcroft I A, Wildman R D. Geometrical effects on residual stress in selective laser melting [J]. Addit. Manuf., 2019, 25: 166
doi: 10.1016/j.addma.2018.09.026
28 Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification [J]. JOM, 2017, 69: 439
doi: 10.1007/s11837-017-2265-2
29 Yang J J, Han J, Yu H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy [J]. Mater. Des., 2016, 110: 558
doi: 10.1016/j.matdes.2016.08.036
30 King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J]. J. Mater. Process. Technol., 2014, 214: 2915
doi: 10.1016/j.jmatprotec.2014.06.005
31 Zhao M H. Study on thermal behavior and microstructure of H13 tool steel fabricated by laser additive manufacturing [D]. Beijing: Beijing University of Chemical Technology, 2020
31 赵明皇. 激光增材制造H13工具钢热行为及微观结构研究 [D]. 北京: 北京化工大学, 2020
32 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
32 杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
33 Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process [J]. Optik, 2020, 208: 164128
doi: 10.1016/j.ijleo.2019.164128
34 Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 68
34 陈德宁, 刘婷婷, 廖文和 等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 68
35 Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): A review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
doi: 10.1007/s00170-021-06810-3
36 Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components [J]. Addit. Manuf., 2020, 36
37 Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
38 Ulbricht A, Altenburg S J, Sprengel M, et al. Separation of the formation mechanisms of residual stresses in LPBF 316L [J]. Metals, 2020, 10: 1234
doi: 10.3390/met10091234
39 Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting [D]. Beijing: Tsinghua University, 2016
39 周 鑫. 激光选区熔化微尺度熔池特性与凝固微观组织 [D]. 北京: 清华大学, 2016
40 Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
41 Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
41 谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
42 Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
42 白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018
43 Pegues J, Roach M, Scott Williamson R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 543
doi: 10.1016/j.ijfatigue.2018.07.013
44 Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
44 谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019
45 Deng G W, Tan C L, Wang D, et al. Defects suppression and mechanism in additive manufacturing high-volume SiC reinforced maraging steel [J]. J. Mech. Eng., 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
45 邓国威, 谭超林, 王 迪 等. 增材制造高体积陶瓷增强马氏体钢缺陷抑制与机理研究 [J]. 机械工程学报, 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
46 Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
doi: 10.1016/j.matdes.2017.04.094
47 Mohr G, Altenburg S J, Hilgenberg K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion [J]. Addit. Manuf., 2020, 32: 101080
48 Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis [J]. Acta Mater., 2005, 53: 3987
doi: 10.1016/j.actamat.2005.05.003
49 Jendrzejewski R, Śliwiński G. Investigation of temperature and stress fields in laser cladded coatings [J]. Appl. Surf. Sci., 2007, 254: 921
doi: 10.1016/j.apsusc.2007.08.014
50 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
51 Amirabdollahian S, Deirmina F, Harris L, et al. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition [J]. Scr. Mater., 2021, 201: 113973
doi: 10.1016/j.scriptamat.2021.113973
52 Nezhadfar P D, Shamsaei N, Phan N. Enhancing ductility and fatigue strength of additively manufactured metallic materials by preheating the build platform [J]. Fatigue Fract. Eng. Mater. Struct., 2021, 44: 257
doi: 10.1111/ffe.13372
53 Luo X P, Zhao M H, Li J Y, et al. Numerical study on thermodynamic behavior during selective laser melting of 24CrNiMo alloy steel [J]. Materials, 2020, 13: 45
doi: 10.3390/ma13010045
54 Zumofen L, Kirchheim A, Dennig H J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties [J]. Prog. Addit. Manuf., 2020, 5: 75
doi: 10.1007/s40964-020-00121-x
55 Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
56 Xue A T, Lin X, Wang L L, et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition [J]. Scr. Mater., 2021, 205: 114180
doi: 10.1016/j.scriptamat.2021.114180
57 Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
58 Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating [J]. J. Manuf. Sci. Eng., 2014, 136: 061026
59 Chen H Y, Gu D D, Dai D H, et al. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting [J]. Mater. Lett., 2018, 227: 128
doi: 10.1016/j.matlet.2018.05.042
60 Zhang J, Yu M J, Li Z Y, et al. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting [J]. J. Alloys Compd., 2021, 856: 158168
doi: 10.1016/j.jallcom.2020.158168
61 Chen X, Qiu C L. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy [J]. Sci. Rep., 2020, 10: 15870
doi: 10.1038/s41598-020-72627-x pmid: 32985532
62 Jing G Y, Huang W P, Yang H H, et al. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48: 44
doi: 10.1016/j.jmst.2019.12.020
63 Tan C L, Chew Y W, Weng F, et al. Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment [J]. Virtual Phys. Prototyping, 2021, 16: 460
doi: 10.1080/17452759.2021.1964268
64 Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
doi: 10.1016/j.actamat.2017.02.069
65 Jägle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
doi: 10.1007/s11837-015-1764-2
66 Barriobero-Vila P, Gussone J, Haubrich J, et al. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments [J]. Materials, 2017, 10: 268
doi: 10.3390/ma10030268
67 Ma Y. The microstructure transformation of selective laser melting processed TC4 at different heights [J]. Appl. Laser, 2020, 40(5):790
67 马 尧. SLM成形TC4钛合金不同高度处微观组织演变 [J]. 应用激光, 2020, 40(5): 790
68 Yan J J, Zheng D L, Li H X, et al. Selective laser melting of H13: Microstructure and residual stress [J]. J. Mater. Sci., 2017, 52: 12476
doi: 10.1007/s10853-017-1380-3
69 Damon J, Koch R, Kaiser D, et al. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140 [J]. Addit. Manuf., 2019, 28: 275
70 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
70 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
71 Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components [J]. Appl. Mater. Today, 2019, 14: 59
doi: 10.1016/j.apmt.2018.11.003
72 Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
73 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
74 Dutta B, Froes F. Additive manufacturing technology [A]. Additive Manufacturing of Titanium Alloys [M]. Amsterdam: Elsevier, 2016: 25
[1] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[3] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[4] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[5] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[6] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[7] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[8] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[10] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[12] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[14] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[15] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.