|
|
金属W中辐照缺陷的产生、演化与热回复机制 |
易晓鸥1( ), 韩文妥1, 刘平平1, FERRONIFrancesco2, 詹倩1, 万发荣1 |
1.北京科技大学 材料科学与工程学院 北京 100083 2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K. |
|
Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten |
YI Xiaoou1( ), HAN Wentuo1, LIU Pingping1, FERRONI Francesco2, ZHAN Qian1, WAN Farong1 |
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K. |
引用本文:
易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
Xiaoou YI,
Wentuo HAN,
Pingping LIU,
Francesco FERRONI,
Qian ZHAN,
Farong WAN.
Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. Acta Metall Sin, 2021, 57(3): 257-271.
1 |
McCracken G, Scott P. Fusion: The Energy of the Universe [M]. 2nd Ed., Oxford: Elsevier, 2013: 15
|
2 |
Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
|
3 |
Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor [J]. Nucl. Fusion, 2017, 57: 092001
|
4 |
Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme on tungsten materials technology and science [J]. J. Nucl. Mater., 2011, 417: 463
|
5 |
Habainy J, Dai Y, Lee Y, et al. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa [J]. J. Nucl. Mater., 2018, 509: 152
|
6 |
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
|
7 |
Dudarev S L. Density functional theory models for radiation damage [J]. Annu. Rev. Mater. Res., 2013, 43: 35
|
8 |
Ackland G J, Finnis M W. Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals [J]. Philos. Mag., 1986, 54A: 301
|
9 |
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
|
9 |
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
|
10 |
Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models [J]. Nat. Commun., 2018, 9: 1084
|
11 |
E 521-96 Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. Pennsylvania: ASTM International, 2009
|
12 |
Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
|
13 |
Gilbert M R, Dudarev S L, Nguyen-Manh D, et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J]. J. Nucl. Mater., 2013, 442: S755
|
14 |
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
|
15 |
Kong X S, Wu X B, You Y W, et al. First-principles calculations of transition metal-solute interactions with point defects in tungsten [J]. Acta Mater., 2014, 66: 172
|
16 |
Hu X X, Parish C M, Wang K, et al. Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum [J]. Acta Mater., 2019, 165: 51
|
17 |
Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten [J]. J. Nucl. Mater., 2017, 495: 492
|
18 |
Kong X S, Wu X B, Liu C S, et al. First-principles calculations of transition metal solute interactions with hydrogen in tungsten [J]. Nucl. Fusion, 2016, 56: 026004
|
19 |
Wirth B D, Hu X X, Kohnert A, et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies [J]. J. Mater. Res., 2015, 30: 1440
|
20 |
Li M M, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92: 2048
|
21 |
Kirk M A, Li M M, Xu D H, et al. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling [J]. J. Nucl. Mater., 2018, 498: 199
|
22 |
Xu D H, Wirth B D, Li M M, et al. Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 109
|
23 |
Nordlund K, Zinkle S J, Sand A E, et al. Primary radiation damage: A review of current understanding and models [J]. J. Nucl. Mater., 2018, 512: 450
|
24 |
Kinchin G H, Pease R S. The displacement of atoms in solids by radiation [J]. Rep. Prog. Phys., 1955, 18: 1
|
25 |
Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
|
26 |
Maury F, Biget M, Vajda P, et al. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold [J]. Radiat. Eff., 1978, 38: 53
|
27 |
Gilbert M R, Marian J, Sublet J C. Energy spectra of primary knock-on atoms under neutron irradiation [J]. J. Nucl. Mater., 2015, 467: 121
|
28 |
De Backer A, Sand A, Ortiz C J, et al. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory [J]. Phys. Scr., 2016, 2016: 014018
|
29 |
Gilbert M R, Sublet J C. PKA distributions: Contributions from transmutation products and from radioactive decay [J]. Nucl. Mater. Energy, 2016, 9: 576
|
30 |
Gilbert M R, Sublet J C. Differential dpa calculations with SPECTRA-PKA [J]. J. Nucl. Mater., 2018, 504: 101
|
31 |
Zhang J Z. Fractals [M]. 2nd Ed., Beijing: Tsinghua University Press, 2011: 8
|
31 |
张济忠. 分形 [M]. 第2版. 北京: 清华大学出版社, 2011: 8
|
32 |
Moreno-Marin J C, Conrad U, Urbassek H M, et al. Fractal structure of collision cascades [J]. Nucl. Instr. Meth. Phys. Res., 1990, 48B: 404
|
33 |
Cheng Y T. On the fractal nature of collision cascades [A]. Materials Modification by High-Fluence Ion Beams. NATO ASI Series (Series E: Applied Sciences) [C]. Dordrecht: Springer, 1989: 191
|
34 |
Sand A E, Dudarev S L, Nordlund K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J]. EPL, 2013, 103: 46003
|
35 |
De Backer A, Sand A E, Nordlund K, et al. Subcascade formation and defect cluster size scaling in high-energy collision events in metals [J]. EPL, 2016, 115: 26001
|
36 |
Sand A E, Nordlund K, Dudarev S L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten [J]. J. Nucl. Mater., 2014, 455: 207
|
37 |
Sand A E, Mason D R, De Backer A, et al. Cascade fragmentation: Deviation from power law in primary radiation damage [J]. Mater. Res. Lett., 2017, 5: 357
|
38 |
Sand A E, Aliaga M J, Caturla M J, et al. Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron [J]. EPL, 2016, 115: 36001
|
39 |
Hofmann F, Nguyen-Manh D, Gilbert M R, et al. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling [J]. Acta Mater., 2015, 89: 352
|
40 |
Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends [J]. Phys. Rev., 2006, 73B: 020101(R)
|
41 |
Eyre B L, Bullough R. On the formation of interstitial loops in b.c.c. metals [J]. Philos. Mag., 1965, 12: 31
|
42 |
Häussermann V F. Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen [J]. Philos. Mag., 1972, 25: 561
|
43 |
Häussermann V F. Elektronenmikroskopische untersuchung der strahlenschädigung durch hochenergetische goldionen in den kubisch-raumzentrierten metallen molybdan und wolfram [J]. Philos. Mag., 1972, 25: 583
|
44 |
Häussermann F, Rühle M, Wilkens M. Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils [J]. Phys. Stat. Sol., 1972, 50B: 445
|
45 |
Jäger W, Wilkens M. Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions [J]. Phys. Status Solidi, 1975, 32A: 89
|
46 |
Yi X O, Jenkins M J, Kirk M A, et al. In-situ electron microscope observations and analysis of radiation damage in tungsten [J]. Microsc. Microanal., 2015, 21: 117
|
47 |
Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
|
48 |
Ventelon L, Willaime F, Fu C C, et al. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals [J]. J. Nucl. Mater., 2012, 425: 16
|
49 |
Gilbert M R, Dudarev S L, Derlet P M, et al. Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten [J]. J. Phys.: Condens. Matter, 2008, 20: 345214
|
50 |
Mason D R, Yi X, Kirk M A, et al. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J]. J. Phys.: Condens. Matter, 2014, 26: 375701
|
51 |
Mason D R, Yi X O, Sand A E, et al. Experimental observation of the number of visible defects produced in individual primary damage cascades in irradiated tungsten [J]. EPL, 2018, 122: 66001
|
52 |
Yi X, Jenkins M L, Briceno M, et al. In situ study of self-ion irradiation damage in W and W-5Re at 500oC [J]. Philos. Mag., 2013, 93: 1715
|
53 |
Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops [J]. J. Nucl. Mater., 1987, 149: 21
|
54 |
Yi X, Sand A E, Mason D R, et al. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades [J]. EPL, 2015, 110: 36001
|
55 |
Mason D R, Sand A E, Yi X, et al. Direct observation of the spatial distribution of primary cascade damage in tungsten [J]. Acta Mater., 2018, 144: 905
|
56 |
Jenkins M L, English C A, Eyre B L. Heavy-ion irradiation of α-iron [J]. Philos. Mag., 1978, 38A: 97
|
57 |
English C A, Jenkins M. Insight into cascade processes arising from studies of cascade collapse [J]. Mater. Sci. Forum, 1987, 15-18: 1003
|
58 |
Robertson I M, Jenkins M L, English C A. Low-dose neutron-irradiation damage in α-iron [J]. J. Nucl. Mater., 1982, 108-109: 209
|
59 |
Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
|
60 |
Robertson I M, Kirk M A, King W E. Formation of dislocation loops in iron by self-ion irradiations at 40 K [J]. Scr. Metall., 1984, 18: 317
|
61 |
Sand A E, Byggmästar J, Zitting A, et al. Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals [J]. J. Nucl. Mater., 2018, 511: 64
|
62 |
Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy [J]. Sci. Rep., 2016, 6: 26099
|
63 |
Arakawa K, Marinica M C, Fitzgerald S, et al. Quantum de-trapping and transport of heavy defects in tungsten [J]. Nat. Mater., 2020, 19: 508
|
64 |
Amino T, Arakawa K, Mori H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters [J]. Philos. Mag. Lett., 2011, 91: 86
|
65 |
Sikka V K, Moteff J. Superlattice of voids in neutron-irradiated tungsten [J]. J. Appl. Phys., 1972, 43: 4942
|
66 |
Li X Y, Liu W, Xu Y C, et al. An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten [J]. Nucl. Fusion, 2013, 53: 123014
|
67 |
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten [J]. J. Nucl. Mater., 2009, 386-388: 218
|
68 |
Johnson P B, Mazey D J. Gas-bubble superlattice formation in bcc metals [J]. J. Nucl. Mater., 1995, 218: 273
|
69 |
Harrison R W, Greaves G, Hinks J A, et al. Engineering self-organising helium bubble lattices in tungsten [J]. Sci. Rep., 2017, 7: 7724
|
70 |
Sikka V K, Moteff J. “Rafting” in neutron irradiated tungsten [J]. J. Nucl. Mater., 1973, 46: 217
|
71 |
Wen M, Ghoniem N M, Singh B N. Dislocation decoration and raft formation in irradiated materials [J]. Philos. Mag., 2005, 85: 2561
|
72 |
Dudarev S L, Arakawa K, Yi X, et al. Spatial ordering of nano-dislocation loops in ion-irradiated materials [J]. J. Nucl. Mater., 2014, 455: 16
|
73 |
El-Atwani O, Aydogan E, Esquivel E, et al. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten [J]. Acta Mater., 2018, 147: 277
|
74 |
Arakawa K, Amino T, Mori H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J]. Acta Mater., 2011, 59: 141
|
75 |
Gilbert M R. BCC metals in extreme environments: Modelling the structure and evolution of defects [D]. Oxford: University of Oxford, 2010
|
76 |
Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
|
77 |
Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
|
78 |
Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials [J]. Fus. Eng. Des., 2014, 89: 1568
|
79 |
Hasegawa A, Fukuda M, Tanno T, et al. Neutron irradiation behavior of tungsten [J]. Mater. Trans., 2013, 54: 466
|
80 |
Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
|
81 |
Chrominski W, Ciupinski L, Bazarnika P, et al. TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten [J]. Mater. Charact., 2019, 154: 1
|
82 |
Schwarz-Selinger T, Bauer J, Elgeti S, et al. Influence of the presence of deuterium on displacement damage in tungsten [J]. Nucl. Mater. Energy, 2018, 17: 228
|
83 |
Zhang C H. Study of radiation damage of materials candidate to advanced nuclear energy systems by utilizing high-energy heavy ions at HIRFL [J]. Nucl. Phys. Rev., 2017, 34: 803
|
83 |
张崇宏. 利用HIRFL高能重离子束的核能材料辐照损伤研究 [J]. 原子核物理评论, 2017, 34: 803
|
84 |
Mansur L K. Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate [J]. J. Nucl. Mater., 1978, 78: 156
|
85 |
Fukuda M, Tanno T, Nogami S, et al. Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten [J]. Mater. Trans., 2012, 53: 2145
|
86 |
Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
|
87 |
Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction [J]. J. Nucl. Mater., 2019, 519: 334
|
88 |
Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys [J]. J. Phys.: Condens. Matter, 2017, 29: 145403
|
89 |
Ekman M, Persson K, Grimvall G. Phase diagram and lattice instability in tungsten-rhenium alloys [J]. J. Nucl. Mater., 2000, 278: 273
|
90 |
Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
|
91 |
Suzudo T, Yamaguchi M, Hasegawa A. Stability and mobility of rhenium and osmium in tungsten: First principles study [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 075006
|
92 |
Suzudo T, Yamaguchi M, Hasegawa A. Migration of rhenium and osmium interstitials in tungsten [J]. J. Nucl. Mater., 2015, 467: 418
|
93 |
Hasegawa A, Takashi T, Nogami S, et al. Property change mechanism in tungsten under neutron irradiation in various reactors [J]. J. Nucl. Mater., 2011, 417: 491
|
94 |
Xu A L, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
|
95 |
Harrison R W, Amari H, Greaves G, et al. Effect of He-appm/DPA ratio on the damage microstructure of tungsten [J]. MRS Adv., 2016, 1: 2893
|
96 |
Nguyen-Manh D, Dudarev S L. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation [J]. Nucl. Instr. Meth. Phys. Res., 2015, 352B: 86
|
97 |
Ipatova I, Harrison R W, Wady P T, et al. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage [J]. J. Nucl. Mater., 2018, 501: 329
|
98 |
Ferroni F, Tarleton E, Fitzgerald S. Dislocation dynamics modelling of radiation damage in thin films [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 045009
|
99 |
Zheng R Y, Han W Z. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten [J]. Acta Mater., 2020, 186: 162
|
100 |
Zhang Z X, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures [J]. J. Nucl. Mater., 2016, 480: 207
|
101 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
|
102 |
Huang Y, Wiezorek J M K, Garner F A, et al. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II [J]. J. Nucl. Mater., 2015, 465: 516
|
103 |
Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces [J]. J. Mater. Sci. Technol., 2020, 52: 29
|
104 |
Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloys Compd., 2019, 779: 926
|
105 |
El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
|
106 |
El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J]. Mater. Res. Lett., 2017, 5: 343
|
107 |
Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
|
108 |
Yang X L, Qiu W B, Chen L Q, et al. Tungsten-potassium: A promising plasma-facing material [J]. Tungsten, 2019, 1: 141
|
109 |
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
|
110 |
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
|
111 |
Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
|
112 |
Zhu H L. A theory of swelling due to void growth in irradiated materials (I): Neutral sinks [J]. Acta Phys. Sin., 1989, 38: 1443
|
112 |
朱慧珑. 辐照材料的肿胀理论(Ⅰ)——中性尾闾 [J]. 物理学报, 1989, 38: 1443
|
113 |
Bullough R, Hayns M R, Wood M H. Sink strengths for thin film surfaces and grain boundaries [J]. J. Nucl. Mater., 1980, 90: 44
|
114 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
|
115 |
Keys L K, Moteff J. Neutron irradiation and defect recovery of tungsten [J]. J. Nucl. Mater., 1970, 34: 260
|
116 |
Bowkett K M, Ralph B. The annealing of radiation damage in tungsten investigated by field-ion microscopy [J]. Proc. R. Soc., London1969, 312A: 51
|
117 |
Kim Y M, Galligan J M. Radiation damage and stage III defect annealing in thermal neutron irradiated tungsten [J]. Acta Metall., 1978, 26: 379
|
118 |
Hu X X, Koyanagi T, Fukuda M, et al. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 278
|
119 |
Ferroni F, Yi X O, Arakawa K, et al. High temperature annealing of ion irradiated tungsten [J]. Acta Mater., 2015, 90: 380
|
120 |
Ferroni F. Electron microscopy and multi-scale modelling of radiation damage recovery in tungsten [D]. Oxford: University of Oxford, 2016
|
121 |
Swinburne T D, Arakawa K, Mori H, et al. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals [J]. Sci. Rep., 2016, 6: 30596
|
122 |
Wilson K L, Baskes M I, Seidman D N. An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys [J]. Acta Metall., 1980, 28: 89
|
123 |
Yi X O, Arakawa K, Du Y F, et al. High-temperature defect recovery in self-ion irradiated W-5 wt%Ta [J]. Nucl. Mater. Energy, 2019, 18: 93
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|