Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 257-271    DOI: 10.11900/0412.1961.2020.00228
  综述 本期目录 | 过刊浏览 |
金属W中辐照缺陷的产生、演化与热回复机制
易晓鸥1(), 韩文妥1, 刘平平1, FERRONIFrancesco2, 詹倩1, 万发荣1
1.北京科技大学 材料科学与工程学院 北京 100083
2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K.
Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten
YI Xiaoou1(), HAN Wentuo1, LIU Pingping1, FERRONI Francesco2, ZHAN Qian1, WAN Farong1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K.
引用本文:

易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
Xiaoou YI, Wentuo HAN, Pingping LIU, Francesco FERRONI, Qian ZHAN, Farong WAN. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. Acta Metall Sin, 2021, 57(3): 257-271.

全文: PDF(2052 KB)   HTML
摘要: 

金属W是核聚变反应堆中面向等离子体部件的主要候选材料。服役期间,钨部件需要承受高温、高通量聚变反应中子轰击带来的辐照级联损伤。这些损伤主要表现为高浓度的点缺陷及团簇。它们与氢氦等离子体、嬗变反应的多种产物相互作用,导致辐照硬化、韧脆转变温度升高、导热能力下降等问题。本文围绕金属W的辐照级联损伤,基于显微缺陷实验表征与材料多尺度模拟计算,系统总结了辐照缺陷的产生、演化与热回复行为及作用机制。这些信息反映了材料中辐照缺陷特征的统计规律,构成定量描述微观损伤组织随时间尺度与空间尺度变化的依据,有利于钨部件性能的预测、服役可靠性评价以及未来新型材料部件的研发。

关键词 聚变堆W辐照缺陷产生演化热回复    
Abstract

Tungsten (W) is a prime candidate for use in plasma-facing components in fusion reactors. These components are subjected to high temperatures and displacement damages caused by fusion neutron bombardments. The displacement damages are mainly present as high concentrations of point defects and clusters. They interact with the hydrogen, helium plasma, and various other transmutation products, giving rise to unwanted consequences, such as radiation hardening, increased brittle-to-ductile transition temperature, and thermal conductivity degradation. This review focuses on the radiation-induced displacement damage in tungsten and aims to provide a systematic summary of the underlying mechanisms for the production, evolution, and thermal recovery of radiation defect, using defect microscopy techniques and materials multiscale modeling. The information uncovered, reflects statistical laws of radiation defect characteristics; serves as the basis for a quantitative description of time- and space-dependent evolution of damage microstructure; and is in great favor of material property prediction, reliability evaluation, and the future development of novel materials.

Key wordsfusion reactor    W    radiation defect    production    evolution    thermal recovery
收稿日期: 2020-06-30     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(51701014)
作者简介: 易晓鸥,女,1984年生,副教授,博士
图1  金属W单个碰撞级联内辐照缺陷的空间分布统计[55](a) high-precision automated defect cluster detection and size analysis based on the mapping of defect contrasts to 2D Gaussians(b) analysis of spatial correlations of radiation defects based on 2D pairwise radial distribution function. ρ represents the separation distance of radiation defects. Conditions adopted for experiment data collection: 50-400 keV W+ irradiation, 30 K, fluence about 1016 W+/m2 (no cascade overlap), weak-beam dark-field contrast imaging with g= 200 and 110, excitation error sg=0.12-0.17 nm-1
图2  辐照缺陷的演化行为[47](a) 1D long-range migration of self-interstitial clusters (pure W, 150 keV W+ irradiation, 573-1073 K)(b) elastic interactions and coalescence reactions between radiation defects favoured loop raft formation and loop growth (W-5%V, 150 keV W+ irradiation, 1073 K)
图3  辐照剂量率对纯W辐照缺陷(位错环或孔洞)数密度的影响(图中所有文献数据均对应辐照缺陷数量未达饱和的情况。为便于比较分析,纵坐标的辐照缺陷数密度表示为单位体积内每平均累积1 dpa损伤而产生的辐照位错环或孔洞数量)[14,76,85,86]
图4  金属W经2 MeV W+ 离子辐照(773 K,1.5 dpa)后的损伤组织热回复过程原位观察[119]
1 McCracken G, Scott P. Fusion: The Energy of the Universe [M]. 2nd Ed., Oxford: Elsevier, 2013: 15
2 Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
3 Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor [J]. Nucl. Fusion, 2017, 57: 092001
4 Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme on tungsten materials technology and science [J]. J. Nucl. Mater., 2011, 417: 463
5 Habainy J, Dai Y, Lee Y, et al. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa [J]. J. Nucl. Mater., 2018, 509: 152
6 Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
7 Dudarev S L. Density functional theory models for radiation damage [J]. Annu. Rev. Mater. Res., 2013, 43: 35
8 Ackland G J, Finnis M W. Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals [J]. Philos. Mag., 1986, 54A: 301
9 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
9 吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
10 Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models [J]. Nat. Commun., 2018, 9: 1084
11 E 521-96 Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. Pennsylvania: ASTM International, 2009
12 Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
13 Gilbert M R, Dudarev S L, Nguyen-Manh D, et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J]. J. Nucl. Mater., 2013, 442: S755
14 Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
15 Kong X S, Wu X B, You Y W, et al. First-principles calculations of transition metal-solute interactions with point defects in tungsten [J]. Acta Mater., 2014, 66: 172
16 Hu X X, Parish C M, Wang K, et al. Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum [J]. Acta Mater., 2019, 165: 51
17 Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten [J]. J. Nucl. Mater., 2017, 495: 492
18 Kong X S, Wu X B, Liu C S, et al. First-principles calculations of transition metal solute interactions with hydrogen in tungsten [J]. Nucl. Fusion, 2016, 56: 026004
19 Wirth B D, Hu X X, Kohnert A, et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies [J]. J. Mater. Res., 2015, 30: 1440
20 Li M M, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92: 2048
21 Kirk M A, Li M M, Xu D H, et al. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling [J]. J. Nucl. Mater., 2018, 498: 199
22 Xu D H, Wirth B D, Li M M, et al. Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 109
23 Nordlund K, Zinkle S J, Sand A E, et al. Primary radiation damage: A review of current understanding and models [J]. J. Nucl. Mater., 2018, 512: 450
24 Kinchin G H, Pease R S. The displacement of atoms in solids by radiation [J]. Rep. Prog. Phys., 1955, 18: 1
25 Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
26 Maury F, Biget M, Vajda P, et al. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold [J]. Radiat. Eff., 1978, 38: 53
27 Gilbert M R, Marian J, Sublet J C. Energy spectra of primary knock-on atoms under neutron irradiation [J]. J. Nucl. Mater., 2015, 467: 121
28 De Backer A, Sand A, Ortiz C J, et al. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory [J]. Phys. Scr., 2016, 2016: 014018
29 Gilbert M R, Sublet J C. PKA distributions: Contributions from transmutation products and from radioactive decay [J]. Nucl. Mater. Energy, 2016, 9: 576
30 Gilbert M R, Sublet J C. Differential dpa calculations with SPECTRA-PKA [J]. J. Nucl. Mater., 2018, 504: 101
31 Zhang J Z. Fractals [M]. 2nd Ed., Beijing: Tsinghua University Press, 2011: 8
31 张济忠. 分形 [M]. 第2版. 北京: 清华大学出版社, 2011: 8
32 Moreno-Marin J C, Conrad U, Urbassek H M, et al. Fractal structure of collision cascades [J]. Nucl. Instr. Meth. Phys. Res., 1990, 48B: 404
33 Cheng Y T. On the fractal nature of collision cascades [A]. Materials Modification by High-Fluence Ion Beams. NATO ASI Series (Series E: Applied Sciences) [C]. Dordrecht: Springer, 1989: 191
34 Sand A E, Dudarev S L, Nordlund K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J]. EPL, 2013, 103: 46003
35 De Backer A, Sand A E, Nordlund K, et al. Subcascade formation and defect cluster size scaling in high-energy collision events in metals [J]. EPL, 2016, 115: 26001
36 Sand A E, Nordlund K, Dudarev S L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten [J]. J. Nucl. Mater., 2014, 455: 207
37 Sand A E, Mason D R, De Backer A, et al. Cascade fragmentation: Deviation from power law in primary radiation damage [J]. Mater. Res. Lett., 2017, 5: 357
38 Sand A E, Aliaga M J, Caturla M J, et al. Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron [J]. EPL, 2016, 115: 36001
39 Hofmann F, Nguyen-Manh D, Gilbert M R, et al. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling [J]. Acta Mater., 2015, 89: 352
40 Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends [J]. Phys. Rev., 2006, 73B: 020101(R)
41 Eyre B L, Bullough R. On the formation of interstitial loops in b.c.c. metals [J]. Philos. Mag., 1965, 12: 31
42 Häussermann V F. Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen [J]. Philos. Mag., 1972, 25: 561
43 Häussermann V F. Elektronenmikroskopische untersuchung der strahlenschädigung durch hochenergetische goldionen in den kubisch-raumzentrierten metallen molybdan und wolfram [J]. Philos. Mag., 1972, 25: 583
44 Häussermann F, Rühle M, Wilkens M. Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils [J]. Phys. Stat. Sol., 1972, 50B: 445
45 Jäger W, Wilkens M. Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions [J]. Phys. Status Solidi, 1975, 32A: 89
46 Yi X O, Jenkins M J, Kirk M A, et al. In-situ electron microscope observations and analysis of radiation damage in tungsten [J]. Microsc. Microanal., 2015, 21: 117
47 Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
48 Ventelon L, Willaime F, Fu C C, et al. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals [J]. J. Nucl. Mater., 2012, 425: 16
49 Gilbert M R, Dudarev S L, Derlet P M, et al. Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten [J]. J. Phys.: Condens. Matter, 2008, 20: 345214
50 Mason D R, Yi X, Kirk M A, et al. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J]. J. Phys.: Condens. Matter, 2014, 26: 375701
51 Mason D R, Yi X O, Sand A E, et al. Experimental observation of the number of visible defects produced in individual primary damage cascades in irradiated tungsten [J]. EPL, 2018, 122: 66001
52 Yi X, Jenkins M L, Briceno M, et al. In situ study of self-ion irradiation damage in W and W-5Re at 500oC [J]. Philos. Mag., 2013, 93: 1715
53 Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops [J]. J. Nucl. Mater., 1987, 149: 21
54 Yi X, Sand A E, Mason D R, et al. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades [J]. EPL, 2015, 110: 36001
55 Mason D R, Sand A E, Yi X, et al. Direct observation of the spatial distribution of primary cascade damage in tungsten [J]. Acta Mater., 2018, 144: 905
56 Jenkins M L, English C A, Eyre B L. Heavy-ion irradiation of α-iron [J]. Philos. Mag., 1978, 38A: 97
57 English C A, Jenkins M. Insight into cascade processes arising from studies of cascade collapse [J]. Mater. Sci. Forum, 1987, 15-18: 1003
58 Robertson I M, Jenkins M L, English C A. Low-dose neutron-irradiation damage in α-iron [J]. J. Nucl. Mater., 1982, 108-109: 209
59 Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
60 Robertson I M, Kirk M A, King W E. Formation of dislocation loops in iron by self-ion irradiations at 40 K [J]. Scr. Metall., 1984, 18: 317
61 Sand A E, Byggmästar J, Zitting A, et al. Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals [J]. J. Nucl. Mater., 2018, 511: 64
62 Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy [J]. Sci. Rep., 2016, 6: 26099
63 Arakawa K, Marinica M C, Fitzgerald S, et al. Quantum de-trapping and transport of heavy defects in tungsten [J]. Nat. Mater., 2020, 19: 508
64 Amino T, Arakawa K, Mori H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters [J]. Philos. Mag. Lett., 2011, 91: 86
65 Sikka V K, Moteff J. Superlattice of voids in neutron-irradiated tungsten [J]. J. Appl. Phys., 1972, 43: 4942
66 Li X Y, Liu W, Xu Y C, et al. An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten [J]. Nucl. Fusion, 2013, 53: 123014
67 Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten [J]. J. Nucl. Mater., 2009, 386-388: 218
68 Johnson P B, Mazey D J. Gas-bubble superlattice formation in bcc metals [J]. J. Nucl. Mater., 1995, 218: 273
69 Harrison R W, Greaves G, Hinks J A, et al. Engineering self-organising helium bubble lattices in tungsten [J]. Sci. Rep., 2017, 7: 7724
70 Sikka V K, Moteff J. “Rafting” in neutron irradiated tungsten [J]. J. Nucl. Mater., 1973, 46: 217
71 Wen M, Ghoniem N M, Singh B N. Dislocation decoration and raft formation in irradiated materials [J]. Philos. Mag., 2005, 85: 2561
72 Dudarev S L, Arakawa K, Yi X, et al. Spatial ordering of nano-dislocation loops in ion-irradiated materials [J]. J. Nucl. Mater., 2014, 455: 16
73 El-Atwani O, Aydogan E, Esquivel E, et al. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten [J]. Acta Mater., 2018, 147: 277
74 Arakawa K, Amino T, Mori H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J]. Acta Mater., 2011, 59: 141
75 Gilbert M R. BCC metals in extreme environments: Modelling the structure and evolution of defects [D]. Oxford: University of Oxford, 2010
76 Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
77 Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
78 Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials [J]. Fus. Eng. Des., 2014, 89: 1568
79 Hasegawa A, Fukuda M, Tanno T, et al. Neutron irradiation behavior of tungsten [J]. Mater. Trans., 2013, 54: 466
80 Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
81 Chrominski W, Ciupinski L, Bazarnika P, et al. TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten [J]. Mater. Charact., 2019, 154: 1
82 Schwarz-Selinger T, Bauer J, Elgeti S, et al. Influence of the presence of deuterium on displacement damage in tungsten [J]. Nucl. Mater. Energy, 2018, 17: 228
83 Zhang C H. Study of radiation damage of materials candidate to advanced nuclear energy systems by utilizing high-energy heavy ions at HIRFL [J]. Nucl. Phys. Rev., 2017, 34: 803
83 张崇宏. 利用HIRFL高能重离子束的核能材料辐照损伤研究 [J]. 原子核物理评论, 2017, 34: 803
84 Mansur L K. Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate [J]. J. Nucl. Mater., 1978, 78: 156
85 Fukuda M, Tanno T, Nogami S, et al. Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten [J]. Mater. Trans., 2012, 53: 2145
86 Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
87 Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction [J]. J. Nucl. Mater., 2019, 519: 334
88 Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys [J]. J. Phys.: Condens. Matter, 2017, 29: 145403
89 Ekman M, Persson K, Grimvall G. Phase diagram and lattice instability in tungsten-rhenium alloys [J]. J. Nucl. Mater., 2000, 278: 273
90 Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
91 Suzudo T, Yamaguchi M, Hasegawa A. Stability and mobility of rhenium and osmium in tungsten: First principles study [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 075006
92 Suzudo T, Yamaguchi M, Hasegawa A. Migration of rhenium and osmium interstitials in tungsten [J]. J. Nucl. Mater., 2015, 467: 418
93 Hasegawa A, Takashi T, Nogami S, et al. Property change mechanism in tungsten under neutron irradiation in various reactors [J]. J. Nucl. Mater., 2011, 417: 491
94 Xu A L, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
95 Harrison R W, Amari H, Greaves G, et al. Effect of He-appm/DPA ratio on the damage microstructure of tungsten [J]. MRS Adv., 2016, 1: 2893
96 Nguyen-Manh D, Dudarev S L. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation [J]. Nucl. Instr. Meth. Phys. Res., 2015, 352B: 86
97 Ipatova I, Harrison R W, Wady P T, et al. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage [J]. J. Nucl. Mater., 2018, 501: 329
98 Ferroni F, Tarleton E, Fitzgerald S. Dislocation dynamics modelling of radiation damage in thin films [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 045009
99 Zheng R Y, Han W Z. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten [J]. Acta Mater., 2020, 186: 162
100 Zhang Z X, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures [J]. J. Nucl. Mater., 2016, 480: 207
101 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
102 Huang Y, Wiezorek J M K, Garner F A, et al. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II [J]. J. Nucl. Mater., 2015, 465: 516
103 Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces [J]. J. Mater. Sci. Technol., 2020, 52: 29
104 Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloys Compd., 2019, 779: 926
105 El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
106 El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J]. Mater. Res. Lett., 2017, 5: 343
107 Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
108 Yang X L, Qiu W B, Chen L Q, et al. Tungsten-potassium: A promising plasma-facing material [J]. Tungsten, 2019, 1: 141
109 Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
110 Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
111 Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
112 Zhu H L. A theory of swelling due to void growth in irradiated materials (I): Neutral sinks [J]. Acta Phys. Sin., 1989, 38: 1443
112 朱慧珑. 辐照材料的肿胀理论(Ⅰ)——中性尾闾 [J]. 物理学报, 1989, 38: 1443
113 Bullough R, Hayns M R, Wood M H. Sink strengths for thin film surfaces and grain boundaries [J]. J. Nucl. Mater., 1980, 90: 44
114 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
115 Keys L K, Moteff J. Neutron irradiation and defect recovery of tungsten [J]. J. Nucl. Mater., 1970, 34: 260
116 Bowkett K M, Ralph B. The annealing of radiation damage in tungsten investigated by field-ion microscopy [J]. Proc. R. Soc., London1969, 312A: 51
117 Kim Y M, Galligan J M. Radiation damage and stage III defect annealing in thermal neutron irradiated tungsten [J]. Acta Metall., 1978, 26: 379
118 Hu X X, Koyanagi T, Fukuda M, et al. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 278
119 Ferroni F, Yi X O, Arakawa K, et al. High temperature annealing of ion irradiated tungsten [J]. Acta Mater., 2015, 90: 380
120 Ferroni F. Electron microscopy and multi-scale modelling of radiation damage recovery in tungsten [D]. Oxford: University of Oxford, 2016
121 Swinburne T D, Arakawa K, Mori H, et al. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals [J]. Sci. Rep., 2016, 6: 30596
122 Wilson K L, Baskes M I, Seidman D N. An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys [J]. Acta Metall., 1980, 28: 89
123 Yi X O, Arakawa K, Du Y F, et al. High-temperature defect recovery in self-ion irradiated W-5 wt%Ta [J]. Nucl. Mater. Energy, 2019, 18: 93
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[8] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[12] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[13] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[14] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[15] 田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红. 用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化[J]. 金属学报, 2021, 57(1): 121-128.