Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1380-1395    DOI: 10.11900/0412.1961.2021.00291
  综述 本期目录 | 过刊浏览 |
纳米孪晶金属和纳米孪晶共价材料的力学行为
温斌(), 田永君()
燕山大学 亚稳材料制备技术与科学国家重点实验室 高压科学中心 秦皇岛 066004
Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials
WEN Bin(), TIAN Yongjun()
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
引用本文:

温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
Bin WEN, Yongjun TIAN. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. Acta Metall Sin, 2021, 57(11): 1380-1395.

全文: PDF(2714 KB)   HTML
摘要: 

金属材料和共价材料是2类重要的结构材料。常规的强化方法在提高这2类材料强度的同时,通常会降低材料的韧性。最近的实验结果表明,孪晶化可以同时提高Cu和金刚石的强度(硬度)和韧性,打破了材料强度和韧性的倒置关系,成为材料力学行为研究的热点。阐明纳米孪晶Cu和纳米孪晶金刚石的强韧化机制,有望找到协同提高材料强度和韧性的有效方法。本文综述了纳米孪晶金属和纳米孪晶共价材料在实验和理论方面的研究进展,总结了纳米孪晶金属和纳米孪晶共价材料的显微组织、制备方法和力学性能,介绍了纳米孪晶金属材料的强化机制和纳米孪晶共价材料的硬化机制,探讨了纳米孪晶材料力学行为研究的发展趋势。

关键词 纳米孪晶结构金属材料共价材料强化机理    
Abstract

Metallic and covalent materials are important structural materials. Traditional strategies for strengthening materials compromise their ductility and toughness. Recent experimental results show that twinning can simultaneously improve the strength (hardness) and toughness of copper and diamond; as the inverse relationship between the strength and toughness of materials is broken, this has become a hot research topic. By studying the strengthening mechanism of nanotwinned copper and diamond, methods to simultaneously improve strength and toughness may be found. Herein, this paper presents a comprehensive overview of the recent developments in the experimental and theoretical studies of nanotwinned metals and covalent materials. The microstructures, fabrication methods, and mechanical properties of nanotwinned metals and covalent materials are summarized. Further, the strengthening mechanism of nanotwinned metals and the hardening mechanism of covalent materials are introduced. Finally, the research trend on the mechanical behavior of nanotwinned materials is discussed in detail.

Key wordsnanotwinned structure    metallic material    covalent material    strengthening mechanism
收稿日期: 2021-07-16     
ZTFLH:  O733  
基金资助:国家杰出青年科学基金项目(51925105);国家自然科学基金项目(52090020)
图1  说明孪晶几何的单位球示意图
图2  一些典型晶体的孪晶结构示意图(a) face-center cubic copper (b) diamond(c) asymmetric twin in cubic boron nitride (d) symmetric twin in cubic boron nitride
图3  孪晶材料中的共格孪晶界和非共格孪晶界示意图
图4  纳米孪晶Cu的屈服强度和塑性[18](a) variation of yield strength as a function of mean twin thickness for the nanotwinned copper samples (Scatter points are experimental values and different shapes represent the values from different groups, and lines are guide to the eyes. nt—nanotwinned, nc—nanocrystalline, σy—yield strength, λ—twin thickness, d—grain size)(b) uniaxial tensile true stress-true strain curves for nanotwinned copper samples tested at a strain rate of 6 × 10-3 s-1 (ufg—ultrafine-grained; cg—coarse-grained; the number after nt is twin thickness, unit is nm)
图5  纳米孪晶共价材料的力学性能[29,95](a) Vickers hardness as a function of average grain size (D) or λ for nanocrystalline cubic boron nitride (cBN) and diamond bulk materials[95](b) comparison of room-temperature mechanical properties of different diamond materials[29]
图6  纳米孪晶Cu的晶体结构以及滑移模式[49](a) a schematic nanotwinned copper microstructure consisting of submicron-sized grains containing parallel nanoscaled twin lamella (M—matrix, T—twin)(b) dislocation slip modes in nanotwinned copper, i.e., slip transfer mode, confined layer slip, twin-ning partial dislocation slip, and ITB migration (b—Burgers vector; b1, b2, b3—Burgers vectors for partial dislocation)
图7  纳米孪晶Cu的临界分切应力与孪晶厚度的关系[49](a) twin-thickness-dependent CRSS for hard modes I and II compared to experimental results (Insets show schematics for slip transfer (hard mode I) and confined layer slip (hard mode II), GB—grain boundary)(b) the activation energy of reaction between the dislocation and twin boundary (TB) as a function of shear stress (Inset is the schematic of the reaction between extended 1/2<110> dislocation and TB in hard mode I, τ—applied shear stress, SF—stacking fault)(c) twin thickness-dependent CRSS for soft modes I and II (Insets show schematics for partial dislocation slip mode (soft mode I) and ITB migration (soft mode II))(d) the stress dependent activation energies of reactions between 1/6<112> partial dislocations and GB in different slip planes (Inset is the schematics of the reaction between 1/6<112> partial dislocation and GB in soft mode I)
图8  纳米孪晶Cu屈服强度的计算结果与实验结果的对比[49](a) the fraction of yielded grains as a function of applied stress for representative nt-Cu samples with twin thicknesses of 5, 15, 40, and 100 nm. Yield strength of the sample is defined as the stress at which the fraction of yielded grains reaches 99% (Inset is the schematic for evaluating yield strength of nt-Cu using the Sachs model)(b) calculated yield strength as a function of twin thickness as compared with experimental results
图9  纳米孪晶金刚石的微结构和位错滑移模式示意图[51](a) a polycrystalline nt-diamond microstructure consists of subparallel nanoscale twin lamella embedded in submicrometer-sized grains (Grains have random orientations)(b) three dislocation slip modes in nt-diamond: slip transfer (slip mode I), confined layer slip (slip mode II), and paralleled to TB slip mode (slip mode III) (Tetrahedrons ABCD and ATBTCTDT represent the Burgers vectors of dislocations in the parent crystal and its twined counterpart, respectively. The partial dislocations are denoted by Roman-Greek pairs (such as Aδ, Cδ, Bδ, etc.))
图10  纳米孪晶金刚石中不同位错滑移模式下的临界分切应力[51](a) CRSS for the slip transfer and the confined layer slip mode (A dislocation pileup model is used for the slip transfer mode, and principles of virtual work are used for the confined layer slip mode. θ?angle between slip plane and twin plane, ΔWDis?increased dislocation energy)(b) CRSS for the slip parallel to the twin plane (Hall-Petch effect by decreasing grain size is used to evaluate CRSS for dislocation slip within the twin plane. The inset is the activation energy as a function of resolved shear stress for dislocation slip in the twin plane and slip in crystal's interior)
图11  纳米孪晶金刚石硬度的计算值与实验值对比[51](a) population of yielded grains as a function of uniaxial stress, based on the Sachs model, which is illustrated schematically in the inset (When the proportion of yielded grains reaches 90%, the corresponding uniaxial stress is defined as the yield stress. The curve is an example for an nt-diamond sample with twin thickness of 5 nm and grain size of 20 nm)(b) calculated hardness of nt-diamond as a function of twin thickness compared to experimental ones (The inset shows the proportion of yielded grain by different slip modes at grain size of 20 nm)
图12  分子动力学方法计算的纳米金刚石和纳米孪晶金刚石压缩强度对比[48](a) compressive strength of nc-diamond as a function of d (Maximum compressive strength is achieved with an average d of 8 nm)(b) compressive strength of nt-diamond as a function of λ (The continuously increasing strength with decreasing λ down to the minimum value 0.618 nm is noteworthy, the lines are guide to the eyes)
图13  纳米孪晶金刚石与纳米孪晶Cu不同的强化方式[48]
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
2 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
3 Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
4 Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
5 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
6 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
7 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
8 Wang T M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
9 Zhu L L, Lu J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution [J]. Int. J. Plast., 2012, 30-31: 166
10 Zhu L L, Shi S Q, Lu K, et al. A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution [J]. Acta Mater., 2012, 60: 5762
11 Zhu L L, Guo X, Ruan H H, et al. Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure [J]. Compos. Sci. Technol., 2016, 123: 222
12 Hall E O. Yield Point Phenomena in Metals and Alloys [M]. New York: Plenum Press, 1970: 37
13 Horita Z, Ohashi K, Fujita T, et al. Achieving high strength and high ductility in precipitation-hardened alloys [J]. Adv. Mater., 2005, 17: 1599
14 Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
15 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
16 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
17 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
18 Lu L, Chen X, Huang X X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
19 Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
20 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
21 Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
22 Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
23 Mahajan S, Williams D F. Deformation twinning in metals and alloys [J]. Int. Metall. Rev., 1973, 18: 43
24 Yoo M H, Lee J K. Deformation twinning in h.c.p. metals and alloys [J]. Philos. Mag., 1991, 63A: 987
25 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
26 Zhu Y T, Liao X Z, Wu X L. Deformation twinning in bulk nanocrystalline metals: Experimental observations [J]. JOM, 2008, 60(9): 60
27 Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
28 Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510: 250
29 Xu B, Tian Y J. Diamond gets harder, tougher, and more deformable [J]. Matter Radiat. Extrem., 2020, 5: 068103
30 Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
31 Anderoglu O, Misra A, Wang H, et al. Thermal stability of sputtered Cu films with nanoscale growth twins [J]. J. Appl. Phys., 2008, 103: 094322
32 Bufford D, Wang H Y, Zhang X H. Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films [J]. J. Mater. Res., 2013, 28: 1729
33 Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films [J]. Acta Mater., 2011, 59: 93
34 Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385
35 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
36 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
37 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
38 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
39 Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
40 Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
41 Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
42 Yip S. The strongest size [J]. Nature, 1998, 391: 532
43 Van Swygenhoven H. Grain boundaries and dislocations [J]. Science, 2002, 296: 66
44 Schiøtz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev., 1999, 60B: 11971
45 Schiøtz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301: 1357
46 Dubrovinskaia N, Solozhenko V L, Miyajima N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness [J]. Appl. Phys. Lett., 2007, 90: 101912
47 Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature [J]. J. Mater. Res., 2007, 22: 2345
48 Wen B, Xu B, Wang Y B, et al. Continuous strengthening in nanotwinned diamond [J]. npj Comput. Mater., 2019, 5: 117
49 Xiao J W, Yang H Z, Liu H X, et al. Strengthening-softening transition in yield strength of nanotwinned Cu [J]. Scr. Mater., 2019, 162: 372
50 Hu W T, Wen B, Huang Q, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness [J]. Sci. China Mater., 2017, 60: 178
51 Xiao J W, Yang H Z, Wu X Z, et al. Dislocation behaviors in nanotwinned diamond [J]. Sci. Adv., 2018, 4: eaat8195
52 Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc., 1965, 288A: 240
53 Jaswon M A, Dove D B. The prediction of twinning modes in metal crystals [J]. Acta Cryst., 1956, 10: 14
54 Jaswon M A, Dove D B. The crystallography of deformation twinning [J]. Acta Cryst., 1960, 13: 232
55 Kiho H. The crystallographic aspect of the mechanical twinning in Ti and α-U [J]. J. Phys. Soc. Jpn., 1958, 13: 269
56 Yu Y N. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 570
56 余永宁. 材料科学基础 [M]. 第2版, 北京:高等教育出版社, 2012: 570
57 Hall E. Twinning and Diffusionless Transformations in Metals [M]. London: Butterworths Scientific Publications, 1954: 53
58 Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy [M]. 3rd Ed., Oxford: Pergamon, 2002: 859
59 Christian J W, Laughlin D E. Overview no.67 The deformation twinning of superlattice structures derived from disordered B.C.C. or F.C.C. solid solutions [J]. Acta Metall., 1988, 36: 1617
60 Bevis M, Crocker A G. Twinning shears in lattices [J]. Proc. Roy. Soc., 1968, 304A: 123
61 Bevis M, Crocker A G. Twinning modes in lattices [J]. Proc. Roy. Soc., 1969, 313A: 509
62 Jaswon M A, Dove D B. Twinning properties of lattice planes [J]. Acta Cryst., 1956, 9: 621
63 Churchman A T, Geach G A, Winton J. Deformation twinning in materials of the A4 (diamond) crystal structure [J]. Proc. Roy. Soc., 1956, 238A: 194
64 Chen T P, Chen F R, Chuang Y C, et al. Study of twins in GaAs, GaP and InAs crystals [J]. J. Cryst. Growth, 1992, 118: 109
65 Tang C Y, Li F H, Wang R, et al. Atomic configurations of dislocation core and twin boundaries in 3C-SiC studied by high-resolution electron microscopy [J]. Phys. Rev., 2007, 75B: 184103
66 Huang C, Yang B, Peng X H, et al. Plastic deformation and hardening mechanisms of a nano-twinned cubic boron nitride ceramic [J]. ACS Appl. Mater. Interfaces, 2020, 12: 50161
67 Shiga K, Maeda K, Morito H, et al. Effect of twin boundary formation on the growth rate of the GaSb{111} plane [J]. Acta Mater., 2020, 185: 453
68 Beyerlein I J, Zhang X H, Misra A. Growth twins and deformation twins in metals [J]. Annu. Rev. Mater. Res., 2014, 44: 329
69 Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
69 卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
70 Lu L, You Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metall. Sin., 2014, 50: 129
70 卢 磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50: 129
71 Cheng Z. Mechanical properties and deformation mechanisms of gradient nanotwinned Cu [D]. Hefei: University of Science and Technology of China, 2019
71 程 钊. 梯度纳米孪晶Cu的力学性能和变形机制研究 [D]. 合肥: 中国科学技术大学, 2019
72 Zhang Y Z. Mechanical properties and plastic deformation mechanism of nano-twinned 316L austenitic stainless steel [D]. Hefei: University of Science and Technology of China, 2019
72 张友昭. 纳米孪晶316L奥氏体不锈钢的力学性能和塑性变形机制研究 [D]. 合肥: 中国科学技术大学, 2019
73 Zhang Z Y. Microstructures and properties of nanotwinned CuCrZr alloy strengthened by precipitates [D]. Hefei: University of Science and Technology of China, 2020
73 张志远. 时效强化纳米孪晶铜铬锆合金微观结构和性能研究 [D]. 合肥: 中国科学技术大学, 2020
74 Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53: 5923
75 Wu B Y C, Schuh C A, Ferreira P J. Nanostructured Ni-Co alloys with tailorable grain size and twin density [J]. Metall. Mater. Trans., 2005, 36A: 1927
76 Nakamoto Y, Yuasa M, Chen Y Q, et al. Mechanical properties of a nanocrystalline Co-Cu alloy with a high-density fine nanoscale la-mellar structure [J]. Scr. Mater., 2008, 58: 731
77 Chen X H, Lu L, Lu K. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins [J]. J. Appl. Phys., 2007, 102: 083708
78 You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
79 Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications [J]. Vacuum, 2000, 56: 159
80 Zhang X H, Wang H, Chen X H, et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins [J]. Appl. Phys. Lett., 2006, 88: 173116
81 Dahlgren S D. Columnar grains and twins in high-purity sputter-deposited copper [J]. J. Vac. Sci. Technol., 1974, 11: 832
82 Dahlgren S D, Nicholson W L, Merz M D, et al. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits [J]. Thin Solid Films, 1977, 40: 345
83 Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning [J]. Acta Mater., 2004, 52: 995
84 Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals [J]. Scr. Mater., 2012, 66: 860
85 Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals [J]. J. Mater. Sci. Technol., 2007, 23: 771
86 Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
87 Li Y S, Zhang Y, Tao N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater., 2009, 57: 761
88 Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scr. Mater., 2008, 59: 975
89 Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on defor-mation twin thickness in Cu-Al alloys [J]. Scr. Mater., 2009, 60: 211
90 Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
91 Zhang B B, Yan F K, Zhao M J, et al. Combined strengthening from nanotwins and nanoprecipitates in an iron-based superalloy [J]. Acta Mater., 2018, 151: 310
92 Yi H Y, Yan F K, Tao N R, et al. Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels [J]. Mater. Sci. Eng., 2015, A647: 152
93 Tao Q, Wei X, Lian M, et al. Nanotwinned diamond synthesized from multicore carbon onion [J]. Carbon, 2017, 120: 405
94 Feng X, Xiao J W, Wen B, et al. Temperature-dependent hardness of zinc-blende structured covalent materials [J]. Sci. China Mater., 2021, 64: 2280
95 Zhao Z S, Xu B, Tian Y J. Recent advances in superhard materials [J]. Annu. Rev. Mater. Res., 2016, 46: 383
96 Xiao J W. Investigation on mechanical properties of nanotwinned diamond and nanotwinned copper [D]. Qinhuangdao: Yanshan University, 2018
96 肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究 [D]. 秦皇岛: 燕山大学, 2018
97 Hartley C S, Blachon D L A. Reactions of slip dislocations at coherent twin boundaries in face-centered-cubic metals [J]. J. Appl. Phys., 1978, 49: 4788
98 Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling [J]. Scr. Mater., 2012, 66: 843
99 Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 3031
100 Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
101 Gu P, Dao M, Suresh S. Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal [J]. Acta Mater., 2014, 67: 409
102 Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals [J]. Acta Mater., 2011, 59: 812
103 Dao M, Lu L, Shen Y F, et al. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J]. Acta Mater., 2006, 54: 5421
104 Ovid’ko I A, Sheinerman A G. Plastic deformation through de-twinning mediated by incoherent twin boundaries in nanotwinned metallic alloys [J]. Rev. Adv. Mater. Sci., 2016, 47: 1
105 Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of a magnesium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2283
106 Blumenau A T, Heggie M I, Fall C J, et al. Dislocations in diamond: Core structures and energies [J]. Phys. Rev., 2002, 65B: 205205
107 Blumenau A T, Jones R, Frauenheim T, et al. Dislocations in diamond: Dissociation into partials and their glide motion [J]. Phys. Rev., 2003, 68B: 014115
108 Masuya S, Hanada K, Oshima T, et al. Formation of stacking fault and dislocation behavior during the high-temperature annealing of single-crystal HPHT diamond [J]. Diam. Relat. Mater., 2017, 75: 155
109 Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements [J]. Metall. Trans., 1971, 2: 1979
110 Bringa E M, Caro A, Wang Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309: 1838
[1] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[2] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[3] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[4] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[5] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[6] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[7] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[8] 栾晓圣, 梁志强, 赵文祥, 石贵红, 李宏伟, 刘心藜, 祝国荣, 王西彬. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
[9] 王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
[10] 许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591.
[11] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[12] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[13] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[14] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[15] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.