|
|
纳米孪晶金属和纳米孪晶共价材料的力学行为 |
温斌( ), 田永君( ) |
燕山大学 亚稳材料制备技术与科学国家重点实验室 高压科学中心 秦皇岛 066004 |
|
Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials |
WEN Bin( ), TIAN Yongjun( ) |
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China |
引用本文:
温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
Bin WEN,
Yongjun TIAN.
Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. Acta Metall Sin, 2021, 57(11): 1380-1395.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
|
2 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
|
3 |
Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
|
4 |
Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
|
5 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
|
6 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
|
7 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
|
8 |
Wang T M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
|
9 |
Zhu L L, Lu J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution [J]. Int. J. Plast., 2012, 30-31: 166
|
10 |
Zhu L L, Shi S Q, Lu K, et al. A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution [J]. Acta Mater., 2012, 60: 5762
|
11 |
Zhu L L, Guo X, Ruan H H, et al. Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure [J]. Compos. Sci. Technol., 2016, 123: 222
|
12 |
Hall E O. Yield Point Phenomena in Metals and Alloys [M]. New York: Plenum Press, 1970: 37
|
13 |
Horita Z, Ohashi K, Fujita T, et al. Achieving high strength and high ductility in precipitation-hardened alloys [J]. Adv. Mater., 2005, 17: 1599
|
14 |
Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
|
15 |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
|
16 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
|
17 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
|
18 |
Lu L, Chen X, Huang X X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
|
19 |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
|
20 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
21 |
Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
|
22 |
Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
|
23 |
Mahajan S, Williams D F. Deformation twinning in metals and alloys [J]. Int. Metall. Rev., 1973, 18: 43
|
24 |
Yoo M H, Lee J K. Deformation twinning in h.c.p. metals and alloys [J]. Philos. Mag., 1991, 63A: 987
|
25 |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
|
26 |
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in bulk nanocrystalline metals: Experimental observations [J]. JOM, 2008, 60(9): 60
|
27 |
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
|
28 |
Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510: 250
|
29 |
Xu B, Tian Y J. Diamond gets harder, tougher, and more deformable [J]. Matter Radiat. Extrem., 2020, 5: 068103
|
30 |
Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
|
31 |
Anderoglu O, Misra A, Wang H, et al. Thermal stability of sputtered Cu films with nanoscale growth twins [J]. J. Appl. Phys., 2008, 103: 094322
|
32 |
Bufford D, Wang H Y, Zhang X H. Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films [J]. J. Mater. Res., 2013, 28: 1729
|
33 |
Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films [J]. Acta Mater., 2011, 59: 93
|
34 |
Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385
|
35 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
36 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
37 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
|
38 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
|
39 |
Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
|
40 |
Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
|
41 |
Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
|
42 |
Yip S. The strongest size [J]. Nature, 1998, 391: 532
|
43 |
Van Swygenhoven H. Grain boundaries and dislocations [J]. Science, 2002, 296: 66
|
44 |
Schiøtz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev., 1999, 60B: 11971
|
45 |
Schiøtz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301: 1357
|
46 |
Dubrovinskaia N, Solozhenko V L, Miyajima N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness [J]. Appl. Phys. Lett., 2007, 90: 101912
|
47 |
Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature [J]. J. Mater. Res., 2007, 22: 2345
|
48 |
Wen B, Xu B, Wang Y B, et al. Continuous strengthening in nanotwinned diamond [J]. npj Comput. Mater., 2019, 5: 117
|
49 |
Xiao J W, Yang H Z, Liu H X, et al. Strengthening-softening transition in yield strength of nanotwinned Cu [J]. Scr. Mater., 2019, 162: 372
|
50 |
Hu W T, Wen B, Huang Q, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness [J]. Sci. China Mater., 2017, 60: 178
|
51 |
Xiao J W, Yang H Z, Wu X Z, et al. Dislocation behaviors in nanotwinned diamond [J]. Sci. Adv., 2018, 4: eaat8195
|
52 |
Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc., 1965, 288A: 240
|
53 |
Jaswon M A, Dove D B. The prediction of twinning modes in metal crystals [J]. Acta Cryst., 1956, 10: 14
|
54 |
Jaswon M A, Dove D B. The crystallography of deformation twinning [J]. Acta Cryst., 1960, 13: 232
|
55 |
Kiho H. The crystallographic aspect of the mechanical twinning in Ti and α-U [J]. J. Phys. Soc. Jpn., 1958, 13: 269
|
56 |
Yu Y N. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 570
|
56 |
余永宁. 材料科学基础 [M]. 第2版, 北京:高等教育出版社, 2012: 570
|
57 |
Hall E. Twinning and Diffusionless Transformations in Metals [M]. London: Butterworths Scientific Publications, 1954: 53
|
58 |
Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy [M]. 3rd Ed., Oxford: Pergamon, 2002: 859
|
59 |
Christian J W, Laughlin D E. Overview no.67 The deformation twinning of superlattice structures derived from disordered B.C.C. or F.C.C. solid solutions [J]. Acta Metall., 1988, 36: 1617
|
60 |
Bevis M, Crocker A G. Twinning shears in lattices [J]. Proc. Roy. Soc., 1968, 304A: 123
|
61 |
Bevis M, Crocker A G. Twinning modes in lattices [J]. Proc. Roy. Soc., 1969, 313A: 509
|
62 |
Jaswon M A, Dove D B. Twinning properties of lattice planes [J]. Acta Cryst., 1956, 9: 621
|
63 |
Churchman A T, Geach G A, Winton J. Deformation twinning in materials of the A4 (diamond) crystal structure [J]. Proc. Roy. Soc., 1956, 238A: 194
|
64 |
Chen T P, Chen F R, Chuang Y C, et al. Study of twins in GaAs, GaP and InAs crystals [J]. J. Cryst. Growth, 1992, 118: 109
|
65 |
Tang C Y, Li F H, Wang R, et al. Atomic configurations of dislocation core and twin boundaries in 3C-SiC studied by high-resolution electron microscopy [J]. Phys. Rev., 2007, 75B: 184103
|
66 |
Huang C, Yang B, Peng X H, et al. Plastic deformation and hardening mechanisms of a nano-twinned cubic boron nitride ceramic [J]. ACS Appl. Mater. Interfaces, 2020, 12: 50161
|
67 |
Shiga K, Maeda K, Morito H, et al. Effect of twin boundary formation on the growth rate of the GaSb{111} plane [J]. Acta Mater., 2020, 185: 453
|
68 |
Beyerlein I J, Zhang X H, Misra A. Growth twins and deformation twins in metals [J]. Annu. Rev. Mater. Res., 2014, 44: 329
|
69 |
Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
|
69 |
卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
|
70 |
Lu L, You Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metall. Sin., 2014, 50: 129
|
70 |
卢 磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50: 129
|
71 |
Cheng Z. Mechanical properties and deformation mechanisms of gradient nanotwinned Cu [D]. Hefei: University of Science and Technology of China, 2019
|
71 |
程 钊. 梯度纳米孪晶Cu的力学性能和变形机制研究 [D]. 合肥: 中国科学技术大学, 2019
|
72 |
Zhang Y Z. Mechanical properties and plastic deformation mechanism of nano-twinned 316L austenitic stainless steel [D]. Hefei: University of Science and Technology of China, 2019
|
72 |
张友昭. 纳米孪晶316L奥氏体不锈钢的力学性能和塑性变形机制研究 [D]. 合肥: 中国科学技术大学, 2019
|
73 |
Zhang Z Y. Microstructures and properties of nanotwinned CuCrZr alloy strengthened by precipitates [D]. Hefei: University of Science and Technology of China, 2020
|
73 |
张志远. 时效强化纳米孪晶铜铬锆合金微观结构和性能研究 [D]. 合肥: 中国科学技术大学, 2020
|
74 |
Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53: 5923
|
75 |
Wu B Y C, Schuh C A, Ferreira P J. Nanostructured Ni-Co alloys with tailorable grain size and twin density [J]. Metall. Mater. Trans., 2005, 36A: 1927
|
76 |
Nakamoto Y, Yuasa M, Chen Y Q, et al. Mechanical properties of a nanocrystalline Co-Cu alloy with a high-density fine nanoscale la-mellar structure [J]. Scr. Mater., 2008, 58: 731
|
77 |
Chen X H, Lu L, Lu K. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins [J]. J. Appl. Phys., 2007, 102: 083708
|
78 |
You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
|
79 |
Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications [J]. Vacuum, 2000, 56: 159
|
80 |
Zhang X H, Wang H, Chen X H, et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins [J]. Appl. Phys. Lett., 2006, 88: 173116
|
81 |
Dahlgren S D. Columnar grains and twins in high-purity sputter-deposited copper [J]. J. Vac. Sci. Technol., 1974, 11: 832
|
82 |
Dahlgren S D, Nicholson W L, Merz M D, et al. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits [J]. Thin Solid Films, 1977, 40: 345
|
83 |
Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning [J]. Acta Mater., 2004, 52: 995
|
84 |
Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals [J]. Scr. Mater., 2012, 66: 860
|
85 |
Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals [J]. J. Mater. Sci. Technol., 2007, 23: 771
|
86 |
Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
|
87 |
Li Y S, Zhang Y, Tao N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater., 2009, 57: 761
|
88 |
Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scr. Mater., 2008, 59: 975
|
89 |
Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on defor-mation twin thickness in Cu-Al alloys [J]. Scr. Mater., 2009, 60: 211
|
90 |
Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
|
91 |
Zhang B B, Yan F K, Zhao M J, et al. Combined strengthening from nanotwins and nanoprecipitates in an iron-based superalloy [J]. Acta Mater., 2018, 151: 310
|
92 |
Yi H Y, Yan F K, Tao N R, et al. Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels [J]. Mater. Sci. Eng., 2015, A647: 152
|
93 |
Tao Q, Wei X, Lian M, et al. Nanotwinned diamond synthesized from multicore carbon onion [J]. Carbon, 2017, 120: 405
|
94 |
Feng X, Xiao J W, Wen B, et al. Temperature-dependent hardness of zinc-blende structured covalent materials [J]. Sci. China Mater., 2021, 64: 2280
|
95 |
Zhao Z S, Xu B, Tian Y J. Recent advances in superhard materials [J]. Annu. Rev. Mater. Res., 2016, 46: 383
|
96 |
Xiao J W. Investigation on mechanical properties of nanotwinned diamond and nanotwinned copper [D]. Qinhuangdao: Yanshan University, 2018
|
96 |
肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究 [D]. 秦皇岛: 燕山大学, 2018
|
97 |
Hartley C S, Blachon D L A. Reactions of slip dislocations at coherent twin boundaries in face-centered-cubic metals [J]. J. Appl. Phys., 1978, 49: 4788
|
98 |
Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling [J]. Scr. Mater., 2012, 66: 843
|
99 |
Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 3031
|
100 |
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
|
101 |
Gu P, Dao M, Suresh S. Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal [J]. Acta Mater., 2014, 67: 409
|
102 |
Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals [J]. Acta Mater., 2011, 59: 812
|
103 |
Dao M, Lu L, Shen Y F, et al. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J]. Acta Mater., 2006, 54: 5421
|
104 |
Ovid’ko I A, Sheinerman A G. Plastic deformation through de-twinning mediated by incoherent twin boundaries in nanotwinned metallic alloys [J]. Rev. Adv. Mater. Sci., 2016, 47: 1
|
105 |
Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of a magnesium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2283
|
106 |
Blumenau A T, Heggie M I, Fall C J, et al. Dislocations in diamond: Core structures and energies [J]. Phys. Rev., 2002, 65B: 205205
|
107 |
Blumenau A T, Jones R, Frauenheim T, et al. Dislocations in diamond: Dissociation into partials and their glide motion [J]. Phys. Rev., 2003, 68B: 014115
|
108 |
Masuya S, Hanada K, Oshima T, et al. Formation of stacking fault and dislocation behavior during the high-temperature annealing of single-crystal HPHT diamond [J]. Diam. Relat. Mater., 2017, 75: 155
|
109 |
Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements [J]. Metall. Trans., 1971, 2: 1979
|
110 |
Bringa E M, Caro A, Wang Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309: 1838
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|