Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1581-1591    DOI: 10.11900/0412.1961.2020.00124
  本期目录 | 过刊浏览 |
热轧变形量对高钛耐磨钢组织与力学性能的影响
许帅1, 孙新军1(), 梁小凯1, 刘俊2, 雍岐龙1
1 钢铁研究总院工程用钢研究所 北京 100081
2 江阴兴澄特种钢铁有限公司 江阴 214400
Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel
XU Shuai1, SUN Xinjun1(), LIANG Xiaokai1, LIU Jun2, YONG Qilong1
1 Department of Structural Steels, Central Iron & Steel Research Institute, Beijing 100081, China
2 Jiangyin Xingcheng Special Steel Co., Ltd., Jiangyin 214400, China
引用本文:

许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591.
Shuai XU, Xinjun SUN, Xiaokai LIANG, Jun LIU, Qilong YONG. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. Acta Metall Sin, 2020, 56(12): 1581-1591.

全文: PDF(3955 KB)   HTML
摘要: 

通过不同总压缩比的实验室热轧、微观组织和析出相表征及力学性能测试等实验,研究了热轧变形量对经过轧后热处理的高钛耐磨钢组织和力学性能的影响。随着轧制变形量的增大,高钛耐磨钢的强度、韧性和塑性均有提高:屈服强度、抗拉强度和总延伸率从压缩比为3∶1时的1202 MPa、1437 MPa和7.4%分别提高到压缩比为30∶1时的1311 MPa、1484 MPa和9.9%,而室温Charpy冲击功从压缩比为3∶1时的11 J大幅提高到压缩比为10∶1时的24 J。随着轧制变形量增大,铸态析出的微米级网状TiC逐渐细化和均匀化,同时尺寸小于15 nm的TiC颗粒占比增加,热处理后的原奥氏体晶粒尺寸则不断减小。通过对高钛耐磨钢各种强化方式的定量分析表明,采用沉淀强化和位错强化均方根叠加方式计算得到的高钛耐磨钢屈服强度与实测值吻合较好,高钛耐磨钢屈服强度随轧制压缩比增加而上升主要是由于晶界强化和沉淀强化作用增加所致。高钛耐磨钢的韧性和塑性随强度的提高不降反升,主要是因为大颗粒TiC在轧制变形过程中发生细化和均匀化。

关键词 高钛耐磨钢压缩比TiC析出力学性能强化机理    
Abstract

To improve the wear performance of steel without increasing its hardness, a high-Ti wear-resistant steel was reinforced with TiC particles. The effects of hot rolling deformation on the microstructure and mechanical properties of the wear-resistant steel containing 0.61%Ti after quenching and tempering were studied in hot rolling experiments with different reduction ratios. The steel products were subjected to microstructure and precipitate characterization and mechanical-property tests. Increasing the rolling deformation improved the strength, toughness, and plasticity of the tested steel. The yield strength, tensile strength, and total elongation were increased from 1202 MPa, 1437 MPa, and 7.4%, respectively, at a reduction ratio of 3∶1 to 1311 MPa, 1484 MPa, and 9.9%, respectively, at a reduction ratio of 30∶1. Meanwhile, increasing the reduction ratio from 3∶1 to 10∶1 remarkably increased the absorbed energy at room temperature (obtained in a Charpy impact test) from 11 J to 24 J. As the rolling deformation increased, the micron-sized net-like TiC particles that precipitated during solidification were gradually refined and homogenized, and the prior austenite grain size was also refined. Next, the strengthening mechanisms of the steel were quantitatively analyzed. The yield strength, calculated by adding the root mean squares of the dislocation and precipitate strengthening values, well agreed with the measured yield strength. The increasing yield strength of the tested steel at higher rolling reduction ratios is mainly attributable to increased grain-boundary strengthening and precipitation strengthening. As the strength of the steel increased, the toughness and plasticity also increased, mainly because the large TiC particles were refined and homogenized during the rolling deformation.

Key wordshigh-Ti wear-resistant steel    rolling reduction ratio    TiC precipitation    mechanical property    strengthening mechanism
收稿日期: 2020-04-17     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2017YFB0305100)
作者简介: 许 帅,男,1995年生,硕士生
图1  高钛耐磨钢轧制与热处理工艺示意图
Sample No.The actual thickness of the plate after each pass / mmTotal reduction ratio
90-3090-72-58-(950 ℃)-44-35-(850 ℃)-303∶1
90-1890-72-58-(950 ℃)-44-33-(850 ℃)-24-185∶1
90-1290-72-58-(950 ℃)-44-33-24-18-(850 ℃)-14-127.5∶1
90-990-72-58-(950 ℃)-44-33-24-18-(850 ℃)-13-910∶1
90-390-72-58-(950 ℃)-44-33-24-18-13-9-(850 ℃)-6-4-330∶1
表1  不同轧制变形量高钛耐磨钢轧制工艺
图2  不同轧制工艺的高钛耐磨钢基体组织的SEM像
图3  不同轧制工艺高钛耐磨钢原奥氏体晶粒的OM像
图4  铸态和不同轧制工艺的高钛耐磨钢中TiC析出相的OM像
Sample No.

Volume fraction

%

Average area

μm2

Average diameter

μm

Maximum diameter

μm

Aspect ratio
90-301.1110.193.0713.672.85
90-181.099.312.8511.842.47
90-121.078.452.669.962.21
90-91.087.872.579.122.03
90-31.107.222.518.081.94
表2  高钛耐磨钢中TiC粒子金相统计结果
图5  TiC析出相的TEM像、HRTEM像、SAED花样和EDS结果
图6  No.90-18样品中的TiC粒径分布图
图7  不同轧制工艺高钛耐磨钢中的TiC粒径分布图
图8  不同轧制工艺高钛耐磨钢的拉伸和冲击性能
Sample No.σ0ΔσpΔσdΔσsΔσgΔσp2+Δσd2σy(6)σy(7)σy(exp)
90-305780410466230418149511711202
90-185777406466256413152211921217
90-1257142424466290447165012601220
90-957165425466295456168012741227
90-357176436466347470174113401311
表3  不同轧制工艺高钛耐磨钢中各种强化增量及实测屈服强度与式(6)和(7)计算结果的比较 (MPa)
图9  不同轧制工艺高钛耐磨钢的XRD谱
Sample No.FWHM / (°)Dislocation density 1015 m-2
(110)(200)(211)
90-300.3190.6090.6132.154
90-180.3200.5710.5852.116
90-120.3450.5980.6182.301
90-90.3370.6080.6262.311
90-30.3470.6430.6132.443
表4  不同轧制工艺高钛耐磨钢中的衍射峰半高宽(FWHM)和位错密度
图10  No.90-18样品冲击断口处TiC粒子的SEM像和EDS结果
[1] Deng X T, Wang Z D, Han Y, et al. Microstructure and abrasive wear behavior of medium carbon low alloy martensitic abrasion resistant steel [J]. J. Iron Steel Res. Int., 2014, 21: 98
doi: 10.1016/S1006-706X(14)60015-7
[2] Zhang K, Yong Q L, Sun X J, et al. Effect of tempering temperature on microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel [J]. Acta Metall. Sin., 2014, 50: 913
[2] (张 可, 雍岐龙, 孙新军等. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响 [J]. 金属学报, 2014, 50: 913)
[3] Lindroos M, Valtonen K, Kemppainen A, et al. Wear behavior and work hardening of high strength steels in high stress abrasion [J]. Wear, 2015, 322-323: 32
doi: 10.1016/j.wear.2014.10.018
[4] Bressan J D, Daros D P, Sokolowski A, et al. Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing [J]. J. Mater. Process. Technol., 2008, 205: 353
doi: 10.1016/j.jmatprotec.2007.11.251
[5] Ojala N, Valtonen K, Heino V, et al. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels [J]. Wear, 2014, 317: 225
doi: 10.1016/j.wear.2014.06.003
[6] Srivastava A K, Das K. Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite [J]. Mater. Lett., 2008, 62: 3947
doi: 10.1016/j.matlet.2008.05.049
[7] Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Mater. Sci. Eng., 2011, A528: 5664
[8] Xu L J, Xing J D, Wei S Z, et al. Study on relative wear resistance and wear stability of high-speed steel with high vanadium content [J]. Wear, 2007, 262: 253
doi: 10.1016/j.wear.2006.05.016
[9] Liu L J. TiC precipitation behavior and its effect on properties in high titanium and high wear-resistant steels [D]. Beijing: Central Iron & Steel Research Institute, 2019
[9] (刘罗锦. 高钛高耐磨钢中TiC析出行为及对性能的影响 [D]. 北京: 钢铁研究总院, 2019)
[10] Sun X J, Liu L J, Liang X K, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel [J]. Acta Metall. Sin., 2020, 56: 661
[10] (孙新军, 刘罗锦, 梁小凯等. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响 [J]. 金属学报, 2020, 56: 661)
[11] Liu L J, Liang X K, Liu J, et al. Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance [J]. ISIJ Int., 2020, 60: 168
doi: 10.2355/isijinternational.ISIJINT-2019-151
[12] Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
doi: 10.1016/j.actamat.2011.09.051
[13] Yu H L. Evolution behavior of cracks and inclusions in slab during rolling [D]. Shenyang: Northeastern University, 2008
[13] (喻海良. 轧制过程中轧件裂纹和夹杂物演变行为研究 [D]. 沈阳: 东北大学, 2008)
[14] Weng Y Q. Ultra-Fine Grained Steels [M]. Beijing: Metallurgical Industry Press, 2003: 1
[14] (翁宇庆. 超细晶钢 [M]. 北京: 冶金工业出版社, 2003: 1)
[15] Liang X K, Sun X J, Yong Q L, et al. Precipitation of TiC in high Ti steel [J]. J. Iron Steel Res., 2016, 28(9): 71
[15] (梁小凯, 孙新军, 雍岐龙等. 高钛钢中TiC析出机制 [J]. 钢铁研究学报, 2016, 28(9): 71)
[16] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 1
[16] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1)
[17] Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
[18] Cooman B C, Speer J G. Strengthening Mechanisms [M]. Warrendale: Fundamentals of Steel Product Metallurgy, 2011: 270
[19] Kennett S C, Krauss G, Findley K O. Prior austenite grain size and tempering effects on the dislocation density of low-C Nb-Ti microalloyed lath martensite [J]. Scr. Mater., 2015, 107: 123
doi: 10.1016/j.scriptamat.2015.05.036
[20] Klemm-Toole J, Benz J, Thompson S W, et al. A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite [J]. Mater. Sci. Eng., 2019, A763: 138145
[21] Akbary F H, Sietsma J, Böttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures [J]. Mater. Sci. Eng., 2015, A639: 208
[22] Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys [J]. ISIJ Int., 2003, 43: 1475
doi: 10.2355/isijinternational.43.1475
[23] Kehoe M, Kelly P M. The role of carbon in the strength of ferrous martensite [J]. Scr. Metall., 1970, 4: 473
doi: 10.1016/0036-9748(70)90088-8
[24] Kobayashi Y, Takahashi J, Kawakami K. Experimental evaluation of the particle size dependence of the dislocation-particle interaction force in TiC-precipitation-strengthened steel [J]. Scr. Mater., 2012, 67: 854
doi: 10.1016/j.scriptamat.2012.08.005
[25] Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
[26] Petch N J. The ductile-brittle transition in the fracture of α-iron: I [J]. Philos. Mag., 1958, 34: 1089
[27] Wang C F. Study on structure control unit of strength and toughness of low alloy martensitic steel [D]. Beijing: Central Iron & Steel Research Institute, 2008
[27] (王春芳. 低合金马氏体钢强韧性组织控制单元的研究 [D]. 北京: 钢铁研究总院, 2008)
[28] Kocks U F. Superposition of alloy hardening, hardening strain, and dynamic recovery [A]. Proc. 5th Int. Conf. Strength of Metals and Alloys [C]. Oxford: Peramon Press, 1979: 1661
[29] Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.