Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1309-1319    DOI: 10.11900/0412.1961.2020.00415
  研究论文 本期目录 | 过刊浏览 |
GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制
刘超, 姚志浩(), 江河, 董建新
北京科技大学 材料科学与工程学院 北京 100083
The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains
LIU Chao, YAO Zhihao(), JIANG He, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
Chao LIU, Zhihao YAO, He JIANG, Jianxin DONG. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. Acta Metall Sin, 2021, 57(10): 1309-1319.

全文: PDF(3699 KB)   HTML
摘要: 

为了阐明GH4720Li合金毫米级粗大晶粒再结晶和塑性协调的可行性,对毫米级晶粒的GH4720Li试样在不同的变形参数下(变形温度为1130、1160和1190℃,应变速率为0.001、0.01、0.1和1 s-1,工程应变为50%)的热变形行为进行研究,并与细晶GH4720Li合金的热变形行为进行对比。结果表明,具有毫米级粗大晶粒的GH4720Li试样对变形温度更加敏感,且在1160~1190℃、0.001~0.01 s-1的范围内可以获得完全再结晶组织,但综合考虑再结晶和热变形塑性的控制范围后,确定毫米级粗晶GH4720Li合金应在适中的变形温度下以较低的应变速率进行热变形才能获得均匀的等轴晶组织且不开裂,较好的变形工艺为1160℃、0.01 s-1

关键词 镍基高温合金GH4720Li合金热变形再结晶    
Abstract

For nickel-based GH4720Li superalloys, fine-grained structures can be obtained via hot deformation in a two-phase area. However, obvious recrystallized grains' coarsening occurs because of the lack of prime γ' pinning grain boundary when hot deformation occurs in a single-phase area. Much attention is directed to the hot deformation of GH4720Li alloys with fine grains. Moreover, several studies have reported the hot deformation behavior of coarse-grained GH4720Li alloys, with maximum grain sizes of several hundred microns. However, only a few studies report about the hot deformation of GH4720Li alloy with millimeter-level coarse grains. Coarse grains recrystallize incompletely and can reduce the hot deformation plasticity of GH4720Li alloy. Thus, to clarify the coordination feasibility between recrystallization and the hot deformation plasticity of GH4720Li alloy with millimeter-level coarse grains, the hot deformation behavior of GH4720Li alloy with millimeter-level coarse grains was investigated under different deformation parameters (deformation temperature of 1130, 1160, and 1190°C; strain rates of 0.001, 0.01, 0.1, and 1 s-1; and engineering strain of 50%) and compared with the hot deformation behavior of fine-grained GH4720Li alloy. The results show that the GH4720Li sample with millimeter-level coarse grains is more sensitive to the deformation temperature, but the fine-grained GH4720Li alloy is more sensitive to strain rate. The completely recrystallized structure of the GH4720Li sample with millimeter-level coarse grains can be obtained in the range of 1160-1190°C and 0.001-0.01 s-1. However, a meager strain rate can cause an undesirable and obvious grain growth. After comprehensively combining the recrystallization control range and the hot deformation plasticity of millimeter-level coarse-grained GH4720Li alloy, it was found that the millimeter-level coarse-grained GH4720Li alloy should be thermally deformed at a moderate deformation temperature and a reduced strain rate of 1160oC and 0.01 s-1, respectively, to obtain the uniform equiaxed grains structure without cracking, and better deformation.

Key wordsnickel-based superalloy    GH4720Li alloy    hot deformation    recrystallization
收稿日期: 2020-10-23     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51771016)
作者简介: 刘 超,男,1994年生,博士生
图1  GH4720Li合金细晶样品和粗晶样品的晶粒组织
图2  细晶和粗晶GH4720Li合金试样在应变速率0.001和1 s-1下变形时的真应力-真应变曲线
图3  细晶和粗晶GH4720Li合金试样不同变形条件下的峰值应力
图4  细晶和粗晶GH4720Li合金试样的应变速率敏感因子m
图5  变形温度对GH4720Li合金细晶试样和粗晶试样热变形的影响
图6  细晶和粗晶GH4720Li合金试样在1130℃以不同应变速率变形后的再结晶组织
图7  细晶和粗晶GH4720Li合金试样在1190℃以不同应变速率变形后的再结晶组织
图8  粗晶GH4720Li合金试样在1160℃、0.01 s-1和1160℃、0.1 s-1变形后的再结晶组织
图9  粗晶GH4720Li合金试样的再结晶体积分数分布图
图10  粗晶和细晶GH4720Li合金试样开裂程度图
图11  粗晶GH4720Li合金试样在1190℃、0.01 s-1条件下变形后裂纹周围的组织特征
图12  细晶GH4720Li合金试样的热加工工艺控制范围
图13  粗晶GH4720Li合金试样的热加工工艺控制范围
图14  初始晶粒尺寸对GH4720Li合金热加工工艺控制范围的影响(a) d = 1768 μm (b) d = 1077 μm (c) d = 7.5 μm
1 Sims C T, Stolof N S, Hangel W. Superalloys Ⅱ [M]. New York: John Wiley & Sons, Inc., 1987: 8
2 Furrer D, Fecht H. Ni-based superalloys for turbine discs [J]. JOM, 1999, 51(1): 14
3 Bryant D J, Mclntosh G. The manufacture and evaluation of a large turbine disc in cast and wrought alloy 720Li [A]. Superalloys 1996 [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 1996: 713
4 Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
4 谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
5 Matsui T, Takizawa H, Kikuchi H, et al. The microstructure prediction of alloy720Li for turbine disk applications [A]. Superalloys 2000 [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 2000: 127
6 Yu Q Y. Study on the correlation between γ' phases, grain size and deformation parameters for GH4720Li alloy [D]. Beijing: University of Science and Technology Beijing, 2013
6 于秋颖. GH4720Li合金γ'相、晶粒度和热加工参数关联性研究 [D]. 北京: 北京科技大学, 2013
7 Chang L T, Jin H, Sun W R. Solidification behavior of Ni-base superalloy Udimet 720Li [J]. J. Alloys Compd., 2015, 653: 266
8 Song X P, Li H Y, Gai J F, et al. The decomposition of metastable high temperature γ' precipitates in U720Li alloy [J]. Acta Metall. Sin., 2005, 41: 1233
8 宋西平, 李红宇, 盖靖峰等. U720Li合金高温析出γ′相的失稳分解 [J]. 金属学报, 2005, 41: 1233
9 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720Li [J]. Metall. Mater. Trans., 2001, 32A: 2441
10 Yu Q Y, Yao Z H, Dong J X. Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map [J]. Int. J. Min. Met. Mater., 2016, 23: 83
11 Chen J Y, Dong J X, Zhang M C, et al. Deformation mechanisms in a fine-grained Udimet 720Li nickel-base superalloy with high volume fractions of γ' phases [J]. Mater. Sci. Eng., 2016, A673: 122
12 Chen J Y, Zhang P D, Dong J X, et al. Relevance of primary γ' dissolution and abnormal grain growth in Udimet 720Li [J]. Mater. Trans., 2015, 56: 1968
13 Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged Udimet 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
14 Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
15 Wan Z P, Hu L X, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy [J]. J. Alloys Compd., 2018, 769: 367
16 Wang T, Wan Z P, Sun Y, et al. Dynamic softening behavior and microstructure evolution of nickel base superalloy [J]. Acta Metall. Sin., 2018, 54: 83
16 王 涛, 万志鹏, 孙 宇等. 镍基变形高温合金动态软化行为与组织演变规律研究 [J]. 金属学报, 2018, 54: 83
17 Zhao Y X, Fu S H, Zhang S W, et al. An advanced cast/wrought technology for GH720Li alloy disk from fine grain ingot [A]. 7th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 2010: 271
18 Fahrmann M, Suzuki A. Effect of cooling rate on gleeble hot ductility of Udimet alloy 720 billet [A]. Superalloys 2008 [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 2008: 311
19 Wan Z P, Wang T, Sun Y, et al. Dynamic softening mechanisms of GH4720Li alloy during hot deformation [J]. Acta Metall. Sin., 2019, 55: 213
19 万志鹏, 王 涛, 孙 宇等. GH4720Li合金热变形过程动态软化机制 [J]. Acta Metall. Sin., 2019, 55: 213
20 Qu J L, Bi Z N, Du J H, et al. Hot deformation behavior of nickel-based superalloy GH4720Li [J]. J. Iron Steel Res. Int., 2011, 18: 59
21 Preuss M, de Fonseca J Q, Grant B, et al. The effect of γ' particle size on the deformation mechanism in an advanced polycrystalline nickel-base superalloy [A]. Superalloys 2008 [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 2008: 405
22 Xie B C, Ning Y Q, Zhou C. Deformation behavior and microstructure evolution of two typical structures in Udimet 720Li ingot [J]. Proc. Eng., 2017, 207: 1093
23 Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
23 王 涛, 万志鹏, 李 钊等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
24 Hyzak J M, Singh R P, Morra J, et al. The microstructural response of as-hip P/M U-720 to thermomechanical processing [A]. Superalloys 1992 [C]. Pittsburgh, PA: The Minerals, Metals, & Materials Society, 1992: 93
25 Monajati H, Zarandi F, Jahazi M, et al. Strain induced γ' precipitation in nickel base superalloy Udimet 720 using a stress relaxation based technique [J]. Scr. Mater., 2005, 52: 771
26 Pang H T, Hardy M C, Hide N, et al. Comparison of fatigue crack propagation in nickel base superalloys RR1000 and Udimet 720Li [J]. Mater. Sci. Technol., 2016, 32: 22
27 Wang X Q, Peng Z C, Zhang M C. Hot deformation behavior of AA-FGH720Li superalloy [J]. Mater. Sci. Forum, 2017, 898: 528
28 Bozzolo N, Souaï N, Logé R E. Evolution of microstructure and twin density during thermomechanical processing in a γ-γ' nickel-based superalloy [J]. Acta Mater., 2012, 60: 5056
29 Yu Q Y, Yao Z H, Dong J X. Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy Udimet720Li ingot material [J]. Mater. Charact., 2015, 107: 398
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[11] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[14] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[15] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.