Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1512-1518    DOI: 10.11900/0412.1961.2019.00149
  研究论文 本期目录 | 过刊浏览 |
AZ31镁合金拉伸扭折带结构的产生及交互作用机制
周博1,2,隋曼龄1,2()
1. 北京工业大学固体微结构与性能研究所 北京 100124
2. 北京工业大学固体微结构与性能北京市重点实验室 北京 100124
Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy
ZHOU Bo1,2,SUI Manling1,2()
1. Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
引用本文:

周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. Acta Metall Sin, 2019, 55(12): 1512-1518.

全文: PDF(9253 KB)   HTML
摘要: 

利用TEM结合SAED花样,对室温轧制变形AZ31镁合金中拉伸扭折带结构及交互作用的形貌和晶体学特征进行了系统的研究。在镁合金塑性变形过程中,当外力不利于常见的孪晶形成及位错滑移时,扭折带作为一种补充的变形方式可以继续协调hcp结构的拉压不对称特性,对材料宏观塑性有着重要的影响。结果显示,hcp结构在与基面呈小角度的拉应力作用下,会形成基面位错对,并向相反方向运动,进而形成以{101ˉ2}晶面为界面的拉伸扭折带。拉伸扭折带界面与基体基面的夹角约为43°。位错在不同变形结构的交互作用过程中起到了非常重要的作用,通过位错的作用可以调节变形结构的形态及晶体学取向,进一步提升材料的塑性。

关键词 镁合金扭折带形变孪晶透射电镜    
Abstract

The deformation structures, such as deformation twins, dislocations and kink bands, play an important role in the plasticity of magnesium alloys during the deformation process. However, due to the complexity of hcp structure, the deformation structures of the magnesium alloys, especially the interactions between deformation structures are still not well understood. Thus, it is of great scientific significance to study the microstructure of magnesium alloys, especially to characterize their structural characteristics of the interaction areas, which plays a significant role in understanding the structure and performance relationships of magnesium alloys. In this work, a combination of TEM and SAED pattern was applied to study the interaction mechanism associated with different kinds of deformation structures in Mg-Al-Zn (AZ31) alloy. When the applied external force is not beneficial for deformation twins and dislocations, kink bands act as a supplementary deformation mode to coordinate the asymmetry of hcp structure. According to crystallographic analysis, it is found that under the action of tensile stress nearly lie on basal plane in hcp structures, the basal dislocation pairs form and move to the opposite directions, forming tension kink band with the interface of {101ˉ2} plane. The angle between the tension kink band interface and the basal plane is about 43°. The tension kink bands can further contribute to the strength and toughness of the material. These results will open a new insight into the understanding of interaction mechanism of deformation structures and greatly promote the development of Mg alloys.

Key wordsMg alloy    kink band    deformation twins    TEM
收稿日期: 2019-05-07     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目(Nos.11374028);国家自然科学基金项目(U1330112);国家自然科学基金项目(51621003);北京市教委重点科研项目(No.KZ201310005002);北京市科技创新-高精尖学科建设项目(No.PXM2019_014204_500031)
作者简介: 周 博,男,1988年生,博士生
图1  样品制备方法
图2  高密度扭折带区域的TEM像
图3  扭折带交互作用区域的TEM分析
图4  {101ˉ1}<101ˉ2ˉ>孪晶与扭折带交互作用的TEM分析
图5  拉伸扭折带形成机理示意图
图6  拉伸扭折带与{101ˉ1}孪晶交互作用机理示意图
Deformation structureForce directionSlip planeSlip directionSchmid factor
(101ˉ1) twin[2ˉ111](101ˉ1)[101ˉ2ˉ]0.349
(101ˉ1ˉ) twin[2ˉ111](101ˉ1ˉ)[101ˉ2]-0.056
Kink band[2ˉ111](0001)[12ˉ10]0.209
表1  不同变形结构在外力作用下的Schmid因子
[1] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [A]. Materials Science Forum [C]. Switzerland: Trans. Tech. Publications, 2000: 19
[2] Barnett M R. Twinning and the ductility of magnesium alloys [J]. Mater. Sci. Eng., 2007, A464: 8
[3] Cizek P, Barnett M R. Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension [J]. Scr. Mater., 2008, 59: 959
[4] Suh B C, Shim M S, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here? [J]. Scr. Mater., 2014, 84-85: 1
[5] Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
[6] Frankel G S. Magnesium alloys: Ready for the road [J]. Nat. Mater., 2015, 14: 1189
[7] Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
[8] Yoo M H, Lee J K. Deformation twinning in h.c.p. metals and alloys [J]. Philos. Mag., 1991, 63A: 987
[9] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metall. Trans., 1981, 12A: 409
[10] Mu S J, Tang F, Gottstein G. A cluster-type grain interaction deformation texture model accounting for twinning-induced texture and strain-hardening evolution: Application to magnesium alloys [J]. Acta Mater., 2014, 68: 310
[11] Orowan E. A type of plastic deformation new in metals [J]. Nature, 1942, 149: 643
[12] Hess J B, Barrett C S. Structure and nature of kink bands in zinc [J]. JOM, 1949, 1(9): 599
[13] Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
[14] Shao X H, Peng Z Z, Jin Q Q, et al. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy [J]. Acta Mater., 2016, 118: 177
[15] Matsumoto T, Yamasaki M, Hagihara K, et al. Configuration of dislocations in low-angle kink boundaries formed in a single crystalline long-period stacking ordered Mg-Zn-Y alloy [J]. Acta Mater., 2018, 151: 112
[16] Hagihara K, Mayama T, Honnami M, et al. Orientation dependence of the deformation kink band formation behavior in Zn single crystal [J]. Int. J. Plast., 2016, 77: 174
[17] Yang X Y, Jiang Y P. Morphology and crystallographic characteristics of deformation bands in Mg alloy under hot deformation [J]. Acta Metall. Sin., 2010, 46: 451
[17] (杨续跃, 姜育培. 镁合金热变形下变形带的形貌和晶体学特征 [J]. 金属学报, 2010, 46: 451)
[18] Wang J, Beyerlein I J, Tomé C N. Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations [J]. Int. J. Plast., 2014, 56: 156
[19] Zhou N, Zhang Z Y, Jin L, et al. Ductility improvement by twinning and twin-slip interaction in a Mg-Y alloy [J]. Mater. Des., 2014, 56: 966
[20] Wang F L, Agnew S. Magnesium Technology 2015 [M]. New Jersey: Springer, 2015: 139
[21] Beyerlein I J, Wang J, Barnett M R, et al. Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations [J]. Proc. Roy. Soc., 2012, 468A: 1496
[22] Zhou B, Tai J, Lu Y, et al. Dislocation-modified high index twinning mechanisms in deformed magnesium alloy [J]. J. Alloys Compd., 2019, 787: 423
[23] Anderson T B. Kink Bands [M]. Berlin: Springer, 1987: 373
[24] Li X C, Li J W, Zhou B, et al. Interaction of {1122} twin variants in hexagonal close-packed titanium [J]. J. Mater. Sci. Technol., 2019, 35: 660
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[12] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[15] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.