Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1503-1511    DOI: 10.11900/0412.1961.2019.00065
  研究论文 本期目录 | 过刊浏览 |
两步贝氏体转变对中碳微纳结构钢韧性的影响
万响亮1,胡锋1,2,3(),成林2,3,黄刚2,3,张国宏2,3,吴开明1,2,3
1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
2. 武汉科技大学高性能钢铁材料及其应用湖北省协同创新中心 武汉 430081
3. 武汉科技大学国际钢铁研究院 武汉 430081
Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel
WAN Xiangliang1,HU Feng1,2,3(),CHENG Lin2,3,HUANG Gang2,3,ZHANG Guohong2,3,WU Kaiming1,2,3
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
3. International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. Acta Metall Sin, 2019, 55(12): 1503-1511.

全文: PDF(13850 KB)   HTML
摘要: 

采用一步(300 ℃等温6 h)和两步(300 ℃等温2 h+250 ℃等温24 h)低温贝氏体转变工艺,研究了残留奥氏体对中碳微纳结构钢冲击韧性的影响,对不同热处理试样的显微组织、各相体积分数、大小角度晶界、有效晶粒尺寸与冲击性能进行表征和分析。结果表明,与一步贝氏体转变相比,两步贝氏体转变试样的冲击性能明显提高,-40 ℃冲击功从31 J提高到42 J,主要原因是第二步贝氏体转变时新形成的贝氏体铁素体分割细化块状未转变奥氏体,减少贝氏体等温后淬火过程中块状马氏体形成,在冲击过程中能够更好地使裂纹分叉甚至阻止裂纹的扩展,显著提高样品的韧性。

关键词 中碳微纳结构钢热处理工艺两步贝氏体转变残留奥氏体冲击韧性    
Abstract

Micro/nano-structured bainitic steel provides a unique combination of ultra-high strength and high ductility due to their structure consisting of micro/nano-scale bainitic-ferrite and retained austenite, but the toughness is a little bit low. The retained austenite plays a leading role for the toughness, and it can significantly increase the toughness of micro/nano-structured bainitic steel by refining the size of blocky retained austenite and improving the content of film retained austenite. Simultaneously, the structure of retained austenite affects the stability of retained austenite, and even can change the micro-deformation and determine the toughness. This work has been refined retained austenite of medium-carbon bainitic steel by using two-step bainitic transformation to study phase transformation of retained austenite through heat treatment. The effect of retained austenite on the impact toughness in medium-carbon micro/nano-structured steels was analyzed by one (300 ℃ for 6 h) and two-step (300 ℃ for 2 h, then 250 ℃ for 24 h) bainitic transformation processes. The microstructure, phase fraction, misorientation, crystallographic grain size and impact energy of different heat treatment steels were observed, detected and analyzed. The results showed that the impact property of two-step bainitic transformation was significantly higher than that of one-step bainitic transformation in medium-carbon steel, which the impact energy in -40 ℃ increased from 31 J to 42 J. The main reason is the new bainitic ferrite was formed in two-step bainitic transformation, the untransformed retained austenite was divided and refined by new bainitic-ferrite, reducing the formation of massive martensite during water quenching after isothermal bainite process. It significantly improve the toughness of the steel because the fracture energy was increased, owing to making crack bifurcation and even preventing the propagation of cracks in the impact process. Through the above-mentioned studies, this research not only precisely refines the retained austenite structure, reveals the effect of retained austenite stability on deformation mechanism and resolves toughness mechanism, but also provides the theoretical guidance for the production of micro/nano-structured bainitic steels in combination with good toughness.

Key wordsmedium-carbon micro/nano-structured steel    heat treatment process    two-step bainitic transformation    retained austenite    impact toughness
收稿日期: 2019-03-11     
ZTFLH:  TG113.1  
基金资助:国家自然科学基金项目(No.51601134)
作者简介: 万响亮,男,1983年生,副教授,博士
ProcessRm / MPaA / %Impact energy / J
One-step138011.528, 36, 29 / 31
Two-step156512.537, 46, 43 / 42
表1  实验用钢的力学性能
图1  中碳钢一步和两步贝氏体转变组织的OM像
图2  中碳钢一步和两步贝氏体转变组织的SEM像
ProcessVBFVRAVM
One-step77158
Two-step8019<5
表2  实验用钢的相体积分数 (%)
图3  中碳钢一步和两步贝氏体转变组织的EBSD取向图
图4  中碳钢一步和两步贝氏体转变组织的晶界角度分布
图5  中碳钢一步和两步贝氏体转变组织的有效晶粒尺寸分布
图6  计算所得TTT曲线和贝氏体转变温度曲线
图7  中碳钢一步和两步贝氏体转变示意图
图8  中碳钢两步贝氏体转变组织的TEM像
[1] Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 19
[2] Bhadeshia H K D H. Nanostructured bainite [J]. Proc. Roy. Soc., 2010, 466: 3
[3] Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels [J]. ISIJ Int., 2005, 45: 1736
[4] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite [J]. ISIJ Int., 2003, 43: 1238
[5] García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
[6] Bhadeshia H K D H. High performance bainitic steels [J]. Mater. Sci. Forum, 2005, 500-501: 63
[7] Timokhina I B, Beladi H, Xiong X Y, et al. Nanoscale microstructural characterization of a nanobainitic steel [J]. Acta Mater., 2011, 59: 5511
[8] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: New composition-property approach part 1 [J]. Met. Sci., 1983, 17: 411
[9] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: New composition-property approach part 2 [J]. Met. Sci., 1983, 17: 420
[10] Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels [J]. Mater. Des., 2009, 30: 2077
[11] Caballero F G, Chao J, Cornide J, et al. Toughness deterioration in advanced high strength bainitic steels [J]. Mater. Sci. Eng., 2009, A525: 87
[12] Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, A438-440: 145
[13] Wang X L, Wu K M, Hu F, et al. Multi-step isothermal bainitic transformation in medium-carbon steel [J] Scr. Mater., 2014, 74: 56
[14] Lindstr?m A. Austempered high silicon steel: Investigation of wear resistance in a carbide free microstructure [D]. Swedish: Lule? University of Technology, 2006
[15] Kozeschnik E, Bhadeshia H K D H. Influence of silicon on cementite precipitation in steels [J]. Mater. Sci. Technol., 2008, 24: 343
[16] Caballero F G, Garcia-Mateo C, Santofimia M J, et al. New experimental evidence on the incomplete transformation phenomenon in steel [J]. Acta Mater., 2009, 57: 8
[17] Caballero F G, Miller M K, Babu S S, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel [J]. Acta Mater., 2007, 55: 381
[18] Caballero F G, Miller M K, Garcia-Mateo C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J]. Acta Mater., 2010, 58: 2338
[19] Reisner G, Werner E A, Kerschbaummayr P, et al. The modeling of retained austenite in low-alloyed TRIP steels [J]. JOM, 1997, 49(9): 62
[20] Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels [J]. Metall. Mater. Trans., 2004, 35A: 2331
[21] Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel [J]. Trans. ISIJ, 1987, 27: 570
[22] Tsai Y T, Chang H T, Huang B M, et al. Microstructural characterization of Charpy-impact-tested nanostructured bainite [J]. Mater. Char., 2015, 107: 63
[23] Bai D Q, Di Chiro A, Yue S. Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel [J]. Mater. Sci. Forum, 1998, 284-286: 253
[24] Chen H C, Era H, Shimizu M. Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet [J]. Metall. Trans., 1989, 20A: 437
[25] Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high strength hot-rolled sheet steel containing retained austenite [J]. ISIJ Int., 1991, 31: 992
[26] Matsumura O, Sakuma Y, Takechi H. TRIP and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel [J]. Scr. Metall., 1987, 21: 1301
[27] Su Y, Fu R Y, Li L, et al. Fracture mechanism of low carbon TRIP steel with Si [J]. J. Shanghai Univ. (Nat. Sci., 2006, 12: 423
[27] (苏 钰, 符仁钰, 李 麟等. 低碳含硅TRIP钢断裂机理的研究 [J]. 上海大学学报(自然科学版), 2006, 12: 423)
[28] Liu Q, Jiang H T, Tang D, et al. Transformation behavior of retained austenite in TRIP steel under stress-strain [J]. J. Plast. Eng., 2009, 16(1): 156
[28] (刘 强, 江海涛, 唐 荻等. TRIP钢中残余奥氏体相变与断裂机制研究 [J]. 塑性工程学报, 2009, 16(1): 156)
[1] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[2] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[3] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[4] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[5] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[6] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[7] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[8] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[9] 蒋中华,王培,李殿中,李依依. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响*[J]. 金属学报, 2015, 51(8): 925-934.
[10] 李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. G18CrMo2-6钢回火组织及冲击韧性研究*[J]. 金属学报, 2014, 50(7): 777-786.
[11] 温涛, 胡小锋 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
[12] 李冬杰, 陆善平, 李殿中, 李依依. 高氮钢焊缝的组织和冲击性能研究[J]. 金属学报, 2013, 49(2): 129-136.
[13] 杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.
[14] 郝宪朝 高明 张龙 赵秀娟 刘奎. 退火态12Cr13不锈钢显微组织及其对冲击韧性的影响[J]. 金属学报, 2011, 47(7): 912-916.
[15] 王存宇 时捷 曹文全 惠卫军 王毛球 董瀚. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究[J]. 金属学报, 2011, 47(6): 720-726.