Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1260-1272    DOI: 10.11900/0412.1961.2018.00500
  本期目录 | 过刊浏览 |
新型第三代粉末高温合金FGH100L的显微组织与力学性能
田甜1,郝志博1,贾崇林2,葛昌纯1()
1. 北京科技大学材料科学与工程学院粉末冶金与先进陶瓷研究所 北京 100083
2. 北京航空材料研究所先进高温结构材料实验室 北京 100095
Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L
TIAN Tian1,HAO Zhibo1,JIA Chonglin2,GE Changchun1()
1. Institute of Powder Metallurgy and Advanced Ceramics, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
Tian TIAN, Zhibo HAO, Chonglin JIA, Changchun GE. Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L[J]. Acta Metall Sin, 2019, 55(10): 1260-1272.

全文: PDF(25134 KB)   HTML
摘要: 

采用喷射成形(SF)+热等静压(HIP)+等温锻造(IF)+热处理(HT)工艺制备第三代粉末高温合金FGH100L。研究固溶热处理温度和制备工艺对FGH100L合金的显微组织与力学性能的影响。结果表明,SF+HIP+IF态FGH100L合金显微组织对固溶温度的变化非常敏感,随固溶温度的升高(1110~1170 ℃),合金的晶粒尺寸长大,γ'强化相的尺寸先增加后减小,其硬度、室温/高温拉伸强度和塑性均呈先增大后减小的趋势。在固溶温度为1130 ℃时,FGH100L合金中3种尺寸的γ'相的数量平衡匹配较为合理,合金的显微组织特征最佳,合金的硬度和室温/高温拉伸性能均最高。且该温度下,FGH100L合金经SF、SF+HIP+HT和SF+HIP+IF+HT不同工艺处理后,晶粒尺寸先增大后减小;晶粒形貌发生了近球形-多边形-近球形的转变;SF+HIP+HT态合金晶粒尺寸增大,晶界弯曲程度较低。由于SF+HIP+IF+HT工艺使FGH100L合金发生再结晶,细化了晶粒,出现链状组织,形成弯曲晶界,合金具有更高的屈服强度;在SF+HIP+HT和SF+HIP+IF+HT工艺下合金的室温拉伸断口从沿晶脆性断裂转变为穿晶-沿晶混合断裂,高温拉伸断口为沿晶断裂。

关键词 第三代粉末高温合金FGH100L喷射成形固溶热处理显微组织力学性能    
Abstract

Spray forming (SF) is a novel rapid solidification technique. Compared with traditional cast & wrought and powder metallurgy technique, it has the advantages of less segregation and shorter process. In this work, a new third generation powder metallurgy (PM) superalloy FGH100L was prepared by SF+hot isostatic pressing (HIP)+isothermal forging (IF)+heat treatment (HT) process. The effects of solution heat treatment temperatures and preparation process on the microstructure and mechanical properties of FGH100L alloy were studied. The results show that the microstructure of SF+HIP+IF state FGH100L alloy is very sensitive to changes of solution temperature. With the increase of the solution temperature (1110~1170 ℃), the grain size of the alloy grew, and the size of the γ' strengthened phase first increased and then decreased. Its hardness, tensile strength and plasticity at room temperature/high temperature all show a trend of increasing followed by decreasing. The quantitative equilibrium of three sizes of γ' phase in the alloy is more reasonable, the microstructure of the alloy is the best, and the hardness and room temperature/high temperature tensile properties of alloy have the highest parameter values at 1130 ℃. At the same temperature, the grain size of FGH100L alloy increased first and then decreased under different processing conditions of SF, SF+HIP+HT and SF+HIP+IF+HT. The morphology of grains changed from subspherical to polygonal to subspherical. Alloy grain size increases, and the grain boundary bending degree decreases in the process of SF+HIP+HT. Due to SF+HIP+IF+HT process, the alloy recrystallizes, refines the grain, and presents chain-like structure, forming curved grain boundary and having higher yield strength. Under SF+HIP+HT and SF+HIP+IF+HT processes, the tensile fracture of the alloy at room temperature changed from intergranular brittle fracture to transgranular and intergranular mixed fracture, and the tensile fracture at high temperature was intergranular fracture.

Key wordsthe third generation PM superalloy FGH100L    spray forming    solution heat treatment    microstructure    mechanical property
收稿日期: 2018-11-05     
ZTFLH:  TF125.2  
基金资助:国家自然科学基金项目(51171016)
作者简介: 田 甜,女,1989年生,博士生
Process statePositionAverage density / (g·cm-3)Relative density / %
SFTop8.1297.13
Middle8.1597.49
Bottom8.1497.37
SF+HIP+HTMiddle8.2398.44
SF+HIP+IF+HTMiddle8.2999.16
表1  不同工艺态FGH100L合金的密度和相对密度
图1  FGH100L合金的DSC曲线
图2  FGH100L合金中析出相与温度的关系曲线
图3  喷射成形(SF)+热等静压(HIP)+等温锻造(IF)态FGH100L合金不同固溶温度热处理后显微组织的OM像、EBSD像和取向差统计图
图4  SF+HIP+IF态FGH100L合金不同固溶温度热处理后析出相形貌的SEM像
图5  不同工艺态的FGH100L合金显微组织OM像
图6  不同工艺态的FGH100L合金析出相形貌的SEM像和EDS分析
图7  不同工艺态FGH100L合金的Brinell硬度与固溶温度的关系
ProcessesSolution temperature / ℃Rp0.2 / MPaRm / MPaδ / %
SF-911107827.5
SF+HIP+HT11301100155020.0
SF+HIP+IF+HT11101180158016.5
11301210162021.5
11501100156018.5
11701090154015.0
AA-LSHR[26,27]11301045153815.0
表2  不同工艺和固溶温度下FGH100L合金的室温拉伸性能
ProcessesSolution temperature / ℃Rp0.2 / MPaRm / MPaδ / %
SF+HIP+HT11301050131011.5
SF+HIP+IF+HT1110100012508.0
11301140138016.5
11501139136010.0
11701130132012.5
AA-LSHR[26,27]11301137.71316.98.0
表3  不同工艺和固溶温度下FGH100L合金的高温拉伸性能
图8  不同工艺态FGH100L合金室温和高温拉伸断口的SEM像
[1] Gabb T P, Telesman J, Kantzos P T ,et al. Characterization of the temperature capabilities of advanced disk alloy ME3 [R]. Washington: National Aeronautics and Space Administration, 2002
[2] Hu B F, Liu G Q, Jia C C ,et al. Development in new type high-performance P/M superalloys [J]. J. Mater. Eng., 2007, 35(2): 49
[2] (胡本芙, 刘国权, 贾成厂等. 新型高性能粉末高温合金的研究与发展 [J]. 材料工程, 2007, 35(2): 49)
[3] Jia J, Tao Y, Zhang Y W ,et al. Recent development of third generation P/M superalloy René104 [J]. Powder Metall. Ind., 2007, 17(3): 36
[3] (贾 建, 陶 宇, 张义文等. 第三代粉末冶金高温合金René104的研究进展 [J]. 粉末冶金工业, 2007, 17(3): 36)
[4] Raisson G. Evolution of PM nickel base superalloy processes and products [J]. Powder Metall., 2008, 51(1): 10
[5] Crozet C, Devaux A, Forestier R ,et al. Effect of ingot size on microstructure and properties of the new advanced AD730TM superalloy [A]. Proceedings of the 13th International Symposium of Superalloys [C]. New York: TMS, 2016: 437
[6] Henein H, Uhlenwinkel V, Fritsching U. Metal Sprays and Spray Deposition [M]. Cham: Springer, 2017: 497
[7] Bricknell R H. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition [J]. Metall. Trans., 1986, 17A: 583
[8] Fiedler H C, Sawyer T F, Kopp R W ,et al. The spray forming of superalloys [J]. JOM, 1987, 39(8): 28
[9] Chang K M, Fiedler H C. Spray-formed high-strength superalloys [A]. Proceedings of the Sixth International Symposium on Superalloys [C]. New York: TMS, 1988: 485
[10] Moran A L, Palko W A. Spray forming alloy 625 marine piping [J]. JOM, 1988, 40(12): 12
[11] Kennedy R L, Davis R M, Vaccaro F P. An evaluation of spray formed alloy 718 [A]. Superalloy718: Metallurgy and Applications [C]. Warrendale: TMS, 1989: 97
[12] Benz M G, Sawyer T F, Carter W T ,et al. Nitrogen in spray formed superalloys [J]. Powder Metall., 1994, 37: 213
[13] Grant P S. Solidification in spray forming [J]. Metall. Mater. Trans., 2007, 38A: 1520
[14] Mi J, Grant P S, Fritsching U ,et al. Multiphysics modelling of the spray forming process [J]. Mater. Sci. Eng., 2008, A477: 2
[15] Zhang G Q, Mi G F, Li Z ,et al. Spray formed nickel based superalloys using argon as atomization gas [J]. Chin J. Nonferrous Met., 1999, 9suppl.): 90
[15] (张国庆, 米国发, 李 周等. 氩气雾化喷射成形的镍基高温合金 [J]. 中国有色金属学报, 1999, 9(增刊):90)
[16] Liu Z W, Mi G F, Tian S F ,et al. A nitrogen spray atomized and deposited Ni-base superalloy [J]. Chin. J. Nonferrous Met., 1999, 9(suppl.):100
[16] (刘仲武, 米国发, 田世藩等. 氮气雾化喷射沉积变形镍基高温合金 [J]. 中国有色金属学报, 1999, 9(增刊):100)
[17] Li Z, Zhang G Q, Zhang Z H ,et al. Relative density and gas content in spray formed superalloys [J]. J. Aeron. Mater., 2000, 20(3): 67
[17] (李 周, 张国庆, 张智慧. 喷射成形高温合金沉积坯致密度与气体含量 [J]. 航空材料学报, 2000, 20(3): 67)
[18] Mi G F, Liu Y L, Tian S F ,et al. Microstructure and mechanical properties of spray deposited Ni-based superalloys [J]. J.Univ Wuhan. Technol.-Mater. Sci. Ed., 2009, 24: 796
[19] Sun J F, Shen J, Cao F Y, alat. Tensile frecture behaviors of spray formed superalloy [J]. Nonferrous Met., 2002, 54(2): 25
[19] (孙剑飞, 沈 军, 曹福洋等. 喷射成形镍基高温合金的拉伸断裂行为 [J]. 有色金属, 2002, 54(2): 25)
[20] Kang F W, Cao F Y, Zhang X M ,et al. Microstructure and mechanical properties of a spray-formed superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 1063
[21] Luo G M, Fan J F, Shan A D. Microstructure analysis of spray-formed superalloy FGH4096 [J]. Baosteel Technol., 2008, (2): 54
[21] (罗光敏, 樊俊飞, 单爱党. 喷射成形高温合金FGH4096的组织分析 [J]. 宝钢技术, 2008, (2): 54)
[22] Xu Y, Huang P, Shu Q ,et al. Microstructure and property of isothermal forged spray forming FGH4095 superalloy [J]. Acta Metall. Sin., 2013, 49: 1399
[22] (徐 轶, 黄 鹏, 舒 琴等. 喷射成形FGH4095高温合金近等温锻造组织特征及性能 [J]. 金属学报, 2013, 49: 1399)
[23] Jia C L, Ge C C, Yan Q Z. Microstructure evolution and mechanical properties of disk superalloy under multiplex heat treatment [J]. Mater. Sci. Eng., 2016, A659: 287
[24] Jia C L, Ge C C, Yan Q Z. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal [J]. Chin. Phys., 2016, 25B: 026103
[25] Wu H H, Wang C W, Zhong J H ,et al. Dispersion effect of graphene composite particles by spray forming [J]. Spec. Casting Nonferrous Alloy, 2019, 39: 75
[25] (吴海华, 王曹文, 钟纪红等. 石墨烯复合微粒喷射成形分散效果研究 [J]. 特种铸造及有色合金, 2019, 39: 75)
[26] Gabb T P, Kantzos P T. Thermal and mechanical property characterization of the advanced disk alloy LSHR [R]. Cleveland: NASA Glenn Research Center, 2005
[27] Jou H J. Microstructure modeling of third generation disk alloys [R]. Cleveland: NASA, 2010
[28] Wang X H, Zheng L, Zhang M C ,et al. Microstructural characteristics and thermodynamic calculation on precipitated phases of GH4133B alloy [J]. Rare Met. Mater. Eng., 2011, 40: 1005
[28] (王晓辉, 郑 磊, 张麦仓等. GH4133B合金组织特征及平衡相析出热力学研究 [J]. 稀有金属材料与工程, 2011, 40: 1005)
[29] Tian G F, Wang Y, Yang J, et al. Thermodynamic calculation on equilibrium precipitated phases in P/M nickel-base superalloy [J]. Powder Metall. Technol., 2012, 30: 243
[29] (田高峰, 汪 煜, 杨 杰等. Ni基粉末冶金高温合金平衡析出相的热力学研究 [J]. 粉末冶金技术, 2012, 30: 243)
[30] Jia J, Tao Y, Zhang Y W. The thermodynamic behavior of PM superalloy FGH4098 [J]. J. Iron Steel Res., 2011, 23(suppl.2482
[30] (贾 建, 陶 宇, 张义文等. 第三代粉末冶金高温合金FGH4098的热力学行为研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 482)
[31] Hu B F, Chen H M, Jin K S ,et al. Static recrystallization mechanism of FGH95 superalloy [J]. Chin. J. Nonferrous Met., 2004, 14: 901
[31] (胡本芙, 陈焕铭, 金开生等. FGH95高温合金的静态再结晶机制 [J]. 中国有色金属学报, 2004, 14: 901)
[32] Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
[32] (胡本芙, 刘国权, 吴 凯等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257)
[33] Jia C L, Zhang F L, Li Y. Investigation on microstructure evolution of a new disk superalloy under different hot process [J]. Met. Powder Rep., 2018, 73: 319
[34] Hu B F, Liu G Q, Wu K ,et al. Morphological changes behavior of fan-type structures of γ' precipitates in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 830
[34] (胡本芙, 刘国权, 吴 凯等. 新型镍基粉末冶金高温合金中γ'相扇形组织形成以及演化行为研究 [J]. 金属学报, 2012, 48: 830)
[35] Hu B F, Chen H M, Song D ,et al. The effect of pre-heating on carbide precipatites in FGH95 superalloy powders prepared by PREP [J]. Acta Metall. Sin., 2003, 39: 470
[35] (胡本芙, 陈焕铭, 宋 铎等. 预热处理对FGH95高温合金粉末中碳化物的影响 [J]. 金属学报, 2003, 39: 470)
[36] Qin X Z, Guo J T, Yuan C ,et al. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy [J]. Mater. Sci. Eng., 2008, A485: 74
[37] Zhang Y, Zhang Y W, Zhang N, et al. Heat treatment processes and microstructure and properties research on P/M superalloy FGH97 [J]. J. Aeron. Mater., 2008, 28(6): 5
[37] (张 莹, 张义文, 张 娜等. FGH97粉末冶金高温合金热处理工艺和组织性能的研究 [J]. 航空材料学报, 2008, 28(6): 5)
[38] Wu K, Liu G Q, Hu B F ,et al. Effect of solution cooling rate and pre-heat treatment on the microstructure and microhardness of a novel type nickel-based P/M superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 685
[38] (吴 凯, 刘国权, 胡本芙等. 固溶冷却速度和前处理对新型镍基粉末高温合金组织与显微硬度的影响 [J]. 稀有金属材料与工程, 2012, 41: 685)
[39] Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy [J]. J. Mater. Eng., 2015, 43(6): 7
[39] (杨万鹏, 胡本芙, 刘国权等. 高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究 [J]. 材料工程, 2015, 43(6): 7)
[40] Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior [J]. Acta Mater., 1998, 46: 69
[41] Zhong X T, Wang L, Liu F. Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
[41] (钟茜婷, 王 磊, 刘 峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969)
[42] Wu K, Liu G Q, Hu B F, et al. Effect of solution heat treatment on the microstructure and properties of a novel nickel-based P/M superalloy FGH98 I [J]. Rare Met. Mater. Eng., 2011, 40: 1966
[42] (吴 凯, 刘国权, 胡本芙等. 固溶热处理对新型镍基粉末FGH98 I高温合金组织与性能的影响 [J]. 稀有金属材料与工程, 2011, 40: 1966)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.