Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1251-1259    DOI: 10.11900/0412.1961.2018.00496
  本期目录 | 过刊浏览 |
成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响
何波1,邢盟1,杨光2(),邢飞3,刘祥宇4
1. 沈阳航空航天大学机电工程学院 沈阳 110136
2. 沈阳航空航天大学航空制造工艺数字化国防重点学科实验室 沈阳 110136
3. 辽宁增材制造产业技术研究院有限公司 沈阳 110021
4. 沈阳中科煜宸科技有限公司 沈阳 110021
Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface
HE Bo1,XING Meng1,YANG Guang2(),XING Fei3,LIU Xiangyu4
1. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
3. Liaoning Additive Manufacturing Industry Technology Research Institute Co. , Ltd. , Shenyang 110021, China
4. Shenyang Zhongke Yuchen Technology Co. , Ltd. , Shenyang 110021, China
引用本文:

何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
Bo HE, Meng XING, Guang YANG, Fei XING, Xiangyu LIU. Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface[J]. Acta Metall Sin, 2019, 55(10): 1251-1259.

全文: PDF(25223 KB)   HTML
摘要: 

通过对不同成分梯度激光沉积TC4/TC11钛合金试样沉积态和热处理态的显微组织、静载力学性能、拉伸断口、室温耐磨性能及显微硬度进行对比研究,探索改善激光沉积TC4/TC11钛合金组织,进而提高综合力学性能的途径。结果表明,当固溶时效热处理温度升高至970 ℃时,TC4/TC11钛合金显微组织中α板条的长宽比更小,其中球状α相和短棒状α相数目明显增多,且具有3层过渡区的显微组织更为均匀有序,过渡界面基本消失;不同成分梯度的固溶时效态试样的强度和塑性随着过渡层数的增加而增加;过渡层为1层和3层试样的摩擦系数曲线相似,过渡层为0层试样的摩擦系数较小,且不同成分梯度的固溶时效态试样磨损机理均主要为剥层磨损和黏着磨损;不同成分梯度试样的硬度排序为:沉积态<去应力退火态<固溶时效态。

关键词 激光沉积制造钛合金热处理显微组织性能    
Abstract

In recent years, gradient composites have been increasingly used in life and industry. The rapid development of laser deposition manufacturing (LDM) technology realizes the manufacturing of dissimilar-metal gradient composite structure used for main bearing component. In this work, laser deposited TC4/TC11 gradient composite structures are taken as the research objects. Since there are few studies on TC4/TC11 titanium alloy, this work focuses on the effect of heat treatment on the microstructures and properties of TC4/TC11 titanium alloy, providing the basis to improve the quality and serving life of laser deposited gradient composite structure. Based on comparative study on the microstructures, residual static performances, tensile fractures, room temperature abrasion results and microhardnesses of laser deposition TC4/TC11 titanium alloy specimens with different composition gradients under different heat treatments, the ways to improve the laser deposition TC4/TC11 titanium alloy microstructure and the comprehensive mechanical properties were explored. Results show that when the temperature of solution and ageing treatment rises to 970 ℃, the length-width ratio of α laths of TC4/TC11 titanium alloy is less than that of the other heat treatment samples. The globular α phase and the short bar α phase are significantly increased. The microstructure of the three-layer transition zone is more uniform and orderly, and the transition interface almost disappears. With the increase of the number of transition layers, the strength and plasticity of solution and ageing samples with different component gradients are increased. The frictional coefficient curve of sample with 1 transition layer is similar to that of the sample with 3 transition layers. The friction coefficient of the sample with the transition layer of 0 is relatively small. The wear mechanism of solution and ageing samples with different component gradients are mainly lamination wear and adhesive wear. From the as-deposited state to the stress relieved and finally to the ageing state of solid solution, the corresponding hardness of the sample with different component gradients increases successively.

Key wordslaser deposition manufacturing    titanium alloy    heat treatment    microstructure    property
收稿日期: 2018-11-01     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2018YFB1105805);国家重点研发计划项目(2017YFB1104002);工信部民用飞机专项科研项目(MJZ-2016-G-71);辽宁省教育厅科学研究项目(L201738);航空制造工艺数字化国防重点学科实验室开放基金项目(SHSYS2017007)
作者简介: 何 波,女,1978年生,博士
AlloyAlVMoZrSiCONHTi
TC45.654.02---0.0620.150.0150.012Bal.
TC115.48-3.541.570.320.0240.020.0120.010Bal.
表1  TC4和TC11钛合金的化学成分
Layer No.TC4TC11
17525
25050
32575
表2  具有3层过渡层的试样各过渡层的成分组成
No.Forming technique and statusHeat treatment parameter
1Laser deposition manufacturingAC
2Stress relief annealing550 ℃, 1 h, AC
3Solution-ageing treatment930 ℃, 1 h, AC+550 ℃, 4 h, AC
4Solution-ageing treatment950 ℃, 1 h, AC+550 ℃, 4 h, AC
5Solution-ageing treatment970 ℃, 1 h, AC+550 ℃, 4 h, AC
表3  热处理制度
图1  拉伸试样取样图
图2  过渡区为0层时不同热处理制度下激光沉积制造TC4/TC11钛合金过渡区显微组织的OM像
图3  过渡区为1层时不同热处理制度下激光沉积制造TC4/TC11钛合金过渡区显微组织的OM像
图4  过渡区为3层时不同热处理制度下激光沉积制造TC4/TC11钛合金过渡区显微组织的OM像
Number of layerσb / MPaσ0.2 / MPaδ / %ψ / %
0987.4957.726.944.8
1994.5964.927.545.3
31010.2980.529.147.1
表4  不同过渡层数的固溶时效态TC4/TC11钛合金的室温拉伸性能
图5  不同过渡层数的固溶时效态TC4/TC11钛合金拉伸断口截面的OM像
图6  不同过渡层数的固溶时效态TC4/TC11钛合金拉伸断口形貌的SEM像
图7  不同过渡层数的固溶时效态TC4/TC11钛合金的摩擦系数曲线
图8  不同过渡层数的固溶时效态TC4/TC11钛合金的磨损形貌
图9  不同过渡层数TC4/TC11区域内EDS分析
Status of material013
As-deposited501.3527.3517.6
Stress relief annealing515.7536.1533.4
Solution-ageing treatment552.1556.4550.8
表5  不同过渡层数TC4/TC11钛合金不同热处理试样的平均显微硬度
[1] Zhang S Y, Lin X, Chen J ,et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
[1] (张霜银, 林 鑫, 陈 静等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263)
[2] Jin P, Sui R, Li F X ,et al. Reactive wetting of TC4 titanium alloy by molten 6061 Al and 4043 Al alloys [J]. Acta Metall. Sin., 2017, 53: 479
[2] (靳 鹏, 隋 然, 李富祥等. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿 [J]. 金属学报, 2017, 53: 479)
[3] Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
[3] (高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915)
[4] Ji S D, Wen Q, Ma L, et al. Microstructure along thickness direction of friction stir welded TC4 titanium alloy joint [J]. Acta Metall. Sin., 2015, 51: 1391
[4] (姬书得, 温 泉, 马 琳
[5] Huang Y, Chen J, Zhang F Y ,et al. Influence of heat treatment on microstructure of laser solid forming Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys [J]. Rare Met. Mater. Eng., 2009, 38: 2146
[5] (黄 瑜, 陈 静, 张凤英等. 热处理对激光立体成形TC11钛合金组织的影响 [J]. 稀有金属材料与工程, 2009, 38: 2146)
[6] Zeng W D, Zhou Y G. Influence of cooling rate on microstructure and mechanical properties of bata processed TC11 alloy [J]. Acta Metall. Sin., 2002, 38: 1273
[6] (曾卫东, 周义刚. 冷速对TC11合金β加工显微组织和力学性能的影响 [J]. 金属学报, 2002, 38: 1273)
[7] Zhou Y G, Zeng W D. The influence of microstructure on dwell sensitivity of fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy [J]. Acta Metall. Sin., 2000, 36: 897
[7] (周义刚, 曾卫东. 显微组织对TC11合金高温保时疲劳敏感性的影响 [J]. 金属学报, 2000, 36: 897)
[8] Liu Y Y, Zhang W X, Zhang Y B ,et al. Effect of deformation amount on the microhardness and element diffusion of the transition zone for Ti3Al/TC11 by laser solid forming [J]. Rare Met. Mater. Eng., 2016, 45: 2429
[8] (刘莹莹, 张温馨, 张元勃等. 变形量对激光立体成形Ti3Al/TC11过渡区显微硬度及合金元素扩散的影响 [J]. 稀有金属材料与工程, 2016, 45: 2429)
[9] Liu Y Y, Lin X, Yang H O ,et al. Effect of component gradient on microstructure and properties of joining interface for Ti3Al/TC11 alloy by laser solid forming [J]. Rare Met. Mater. Eng., 2014, 43: 2197
[9] (刘莹莹, 林 鑫, 杨海鸥等. 成分梯度对激光立体成形Ti3Al/TC11连接界面组织和性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 2197)
[10] Chen Y H, Li S H, Lu W W. Study on crack sensitivity of NiTiNb/TC4 laser micro-welding joints [J]. Aeronaut. Sci. Technol., 2017, 28(4): 75
[10] (陈玉华, 李树寒, 陆巍巍. NiTiNb/TC4异种材料激光微焊接头裂纹研究 [J]. 航空科学技术, 2017, 28(4): 75)
[11] Li J, Zhang T C, Lang B. High-cycle fatigue property and fracture of linear friction welding joint in TC11 and TC17 [J]. Hot Working Technol., 2014, 43(11): 186
[11] (李 菊, 张田仓, 郎 波. TC11/TC17线性摩擦焊接头疲劳性能及断口分析 [J]. 热加工工艺, 2014, 43(11): 186)
[12] Dong Z J, Luo Z Q, Hu M H. Study on the process and tensile properties of laser welded Ti-22Al-27Nb alloy [J]. Aeronaut. Manuf. Technol., 2013, (4): 13
[12] (董智军, 罗志强, 胡明华. 激光焊接Ti-22Al-27Nb合金工艺性能研究 [J]. 航空制造技术, 2013, (4): 13)
[13] Zhang Q, Chen J, Han C X ,et al. The effect of laser repair heat affected zone depth on the tensile properties of TC17-TC11 dual alloy [J]. Appl. Laser, 2012, 32: 267
[13] (张 强, 陈 静, 韩昌旭等. 激光修复热影响区深度对TC17-TC11双合金拉伸性能的影响 [J]. 应用激光, 2012, 32: 267)
[14] Qu H P, Li P, Zhang S Q ,et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material [J]. Mater. Des., 2010, 31: 574
[15] Xu X J, Lin X, Yang M C ,et al. Dendrite structure evolution in Ti-20%Ni alloy prepared by laser solid forming [J]. Acta Metall. Sin., 2008, 44: 1013
[15] (许小静, 林 鑫, 杨模聪等. 激光立体成形Ti-20%Ni合金枝晶的组织演化 [J]. 金属学报, 2008, 44: 1013)
[16] Lin X, Yue T M, Yang H O ,et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy [J]. Metall. Mater. Trans., 2007, 38A: 127
[17] Lin X, Yue T M , Yang H O, et al. Laser rapid forming of SS316L/Rene88DT graded material [J]. Mater. Sci. Eng., 2005, A391: 325
[18] Shuai S S, Lin X, Xiao W Q, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing [J]. Acta Metall. Sin., 2018, 54: 918
[18] (帅三三, 林 鑫, 肖武泉等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响 [J]. 金属学报, 2018, 54: 918)
[19] Liu Y Y, Yao N, He L, et al. Effect of heat treatment on microstructure and properties of the joining interface for Ti3Al/TC11 by laser solid forming [J]. China Sci. Paper, 2014, 9: 234
[19] (刘莹莹, 姚 暖, 何 磊等. 热处理对激光立体成形Ti3Al/TC11连接界面组织性能的影响 [J]. 中国科技论文, 2014, 9: 234)
[20] Peng C, Zhang S Y, Ren L ,et al. Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy [J]. Acta Metall. Sin., 2017, 53: 1377
[20] (彭 聪, 张书源, 任 玲等. 冷却速率对含Cu钛合金显微组织和性能的影响 [J]. 金属学报, 2017, 53: 1377)
[21] Yu B B, Chen Z Y, Zhao Z B ,et al. Microstructure and mechanical properties of electron beam weldment of titanium alloy TC17 [J]. Acta Metall. Sin., 2016, 52: 831
[21] (于冰冰, 陈志勇, 赵子博等. TC17钛合金电子束焊接接头的显微组织与力学性能研究 [J]. 金属学报, 2016, 52: 831)
[22] Ma T, Liu T T, Liao W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting [J]. Chin. J. Lasers, 2018, 45: 1102012
[22] (马 涛, 刘婷婷, 廖文和等. 激光选区熔化成形Ti-6Al-4V疲劳性能研究 [J]. 中国激光, 2018, 45: 1102012)
[23] Zhou Q J, Yan Z Y, Han X ,et al. Microstructure and mechanical properties of laser melting deposited TC11 titanium alloys [J]. Chin. J. Lasers, 2018, 45: 1102005
[23] (周庆军, 严振宇, 韩 旭等. 激光熔化沉积TC11钛合金的组织与力学性能 [J]. 中国激光, 2018, 45: 1102005)
[24] Huang K Z, Zhou Y, Zhang B ,et al. Dry sliding friction and wear behavior of TC11 alloy with different tribo-layers [J]. Chin. J. Rare Met., 2018, 42: 601
[24] (黄柯植, 周 银, 张 波等. 不同摩擦层对TC11合金干滑动摩擦磨损行为的影响 [J]. 稀有金属, 2018, 42: 601)
[25] He B W, Ran X Z, Tian X J ,et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy [J]. Chin. J. Lasers, 2016, 43: 0403004
[25] (何博文, 冉先喆, 田象军等. 激光增材制造TC11钛合金的耐蚀性研究 [J]. 中国激光, 2016, 43: 0403004)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[13] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[14] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[15] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.