|
|
电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 |
陶然, 赵玉涛( ), 陈刚, 怯喜周 |
江苏大学材料科学与工程学院 镇江 212013 |
|
Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field |
Ran TAO, Yutao ZHAO( ), Gang CHEN, Xizhou KAI |
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
Ran TAO,
Yutao ZHAO,
Gang CHEN,
Xizhou KAI.
Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. Acta Metall Sin, 2019, 55(1): 160-170.
[1] | Engler O, Sch?fer C, Brinkman H J.Crystal-plasticity simulation of the correlation of microtexture and roping in AA6xxx Al-Mg-Si sheet alloys for automotive applications[J]. Acta Mater., 2012, 60: 5217 | [2] | Kusters S, Seefeldt M, Van Houtte P.A fourier image analysis technique to quantify the banding behavior of surface texture components in AA6xxx aluminum sheet[J]. Mater. Sci. Eng. 2010, A527: 6239 | [3] | Li X, Tang J G, Zhang X M, et al.Effect of warm deformation on natural ageing and mechanical property of aluminum alloy 6061 sheets for automotive body[J]. Chin. J. Nonferrous Met., 2016, 26: 1(李翔, 唐建国, 张新明等. 温变形对汽车车身用6061铝合金自然时效及力学性能的影响[J]. 中国有色金属学报, 2016, 26: 1) | [4] | Tamura S, Sumikawa S, Uemori T, et al.Experimental observation of elasto-plasticity behavior of type 5000 and 6000 aluminum alloy sheets[J]. Mater. Trans., 2011, 52: 255 | [5] | Macwan A, Kumar A, Chen D L.Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: Microstructure and mechanical properties[J]. Mater. Des., 2017, 113: 284 | [6] | Karthik G M, Ram G D J, Kottada R S. Friction deposition of titanium particle reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2016, A653: 71 | [7] | Ramesh C S, Pramod S, Keshavamurthy R.A study on microstructure and mechanical properties of Al6061-TiB2 in-situ composites[J]. Mater. Sci. Eng., 2011, A528: 4125 | [8] | Lee I S, Hsu C J, Chen C F, et al.Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing[J]. Compos. Sci. Technol., 2011, 71: 693 | [9] | Zhang Q, Wang Q Z, Xiao B L, et al.Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy[J]. Acta Metall. Sin., 2012, 48: 135(张琪, 王全兆, 肖伯律等. 粉末冶金制备SiCP/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48: 135) | [10] | Zhou L, Wang C Z, Zhang X X, et al.Finite element simulation of hot rolling process for SiCp/Al composite[J]. Acta Metall. Sin., 2015, 51: 889(周丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51: 889) | [11] | Yu Z Q, Lin Z Q, Zhao Y X.Evaluation of fracture limit in automotive aluminium alloy sheet forming[J]. Mater. Des., 2007, 28: 203 | [12] | Yang Y, Lan J, Li X C.Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Mater. Sci. Eng., 2004, A380: 378 | [13] | Su H, Gao W L, Feng Z H, et al.Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites[J]. Mater. Des., 2012, 36: 590 | [14] | Tian K L, Zhao Y T, Jiao L, et al.Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites[J]. J. Alloys Compd., 2014, 594: 1 | [15] | Yang R, Zhang Z Y, Zhao Y T, et al.Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction[J]. Mater. Charact., 2016, 112: 51 | [16] | Tjong S C, Chen F.Wear behavior of as-cast ZnAl27/SiC particulate metal-matrix composites under lubricated sliding condition[J]. Metall. Mater. Trans., 1997, 28A: 1951 | [17] | Tsumekawa Y, Suzuki H, Okumiya M.Preparation of in-situ reinforced composites using ultrasonic vibration and selective incorporation of reinforcements by magneticfield[J]. Alum. Trans., 2000, 2: 1 | [18] | Agrawal S, Ghose A K, Chakrabarty I.Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Mater. Des., 2016, 113: 195 | [19] | Garcia-Hinojosa J A, Gonzalez-Rivera C, Juárez I J A, et al. Effect of grain refinement treatment on the microstructure of cast Al-7Si-SiCp composites[J]. Mater. Sci. Eng., 2004, A386: 54 | [20] | Lu L, Lai M O, Chen F L.In situ preparation of TiB2 reinforced Al base composite[J]. Adv. Compos. Mater, 1997, 6: 299 | [21] | Yu J B, Ren Z M, Ren W L, et al.Solidification structure of eutectic Al-Si alloy under a high magnetic field-aid-electromagnetic vibration[J]. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 191 | [22] | Arsenault R J, Shi N.Dislocation generation due to differences between the coefficients of thermal expansion[J]. Mater. Sci. Eng., 1986, 81: 175 | [23] | Lo S H J, Dionne S, Sahoo M, et al. Mechanical and tribological properties of zinc-aluminium metal-matrix composites[J]. J. Mater. Sci., 1992, 27: 5681 | [24] | Li J X, Wang L Q, Qin J N, et al.Effect of microstructure on high temperature properties of in situ synthesized (TiB+La2O3)/Ti composite[J]. Mater. Charact., 2012, 66: 93 | [25] | Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690 | [26] | Hsu C J, Chang C Y, Kao P W, et al.Al-Al3Ti nanocomposites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54: 5241 | [27] | Sajjadi S A, Ezatpour H R, Beygi H.Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting[J]. Mater. Sci. Eng., 2011, A528: 8765 | [28] | Kim W J, Hong S I, Lee J M, et al.Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling[J]. Mater. Sci. Eng., 2013, A559: 325 | [29] | Gokhale A M, Deshpande N U, Denzer D K, et al.Relationship between fracture toughness, fracutre path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model[J]. Metall. Mater. Trans., 1998, 29A: 1203 | [30] | Srivatsan T S.Cyclic strain resistance and fracture behaviour of Al2O3-particulate-reinforced 2014 aluminium alloy metal-matrix composites[J]. Int. J. Fatigue, 1995, 17: 183 | [31] | Chen F, Mao F, Chen Z N, et al.Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behavior of TiB2 particles in aluminum[J]. J. Alloys Compd., 2015, 622: 831 | [32] | Jiao L, Zhao Y, Wu Y, et al.Microstructures of in-situ TiB2/7055Al composites by the ultrasonic and magnetic coupled field[J]. Rare Met. Mater. Eng., 2014, 43: 6 | [33] | Chen D B, Zhao Y T, Li G R, et al.Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26: 920 | [34] | Vives C, Perry C.Effects of electromagnetic stirring during the controlled solidification of tin[J]. Int. J. Heat Mass Transfer, 1986, 29: 21 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|