Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 757-765    DOI: 10.11900/0412.1961.2017.00536
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
脉冲磁致振荡凝固技术
龚永勇1,2, 程书敏2, 钟玉义2, 张云虎1, 翟启杰1()
1 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072
2 上海大学理学院 上海 200444
The Solidification Technology of Pulsed Magneto Oscillation
Yongyong GONG1,2, Shumin CHENG2, Yuyi ZHONG2, Yunhu ZHANG1, Qijie ZHAI1()
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
2 College of Science, Shanghai University, Shanghai 200444, China
全文: PDF(5123 KB)   HTML
摘要: 

随着冶金新技术的发展,金属材料面临高均质化、高洁净化、超细晶化和低消耗的性能要求。脉冲电磁场因能耗低、施加方便、细化效果显著,成为新一代冶金技术的发展方向。脉冲电磁场凝固技术主要包括脉冲电流、脉冲磁场和脉冲磁致振荡凝固技术。脉冲磁致振荡技术是在脉冲电流和电磁搅拌的理论基础上,将脉冲电流导入感应线圈,通过磁场诱发熔体感应出电磁力进行非接触式处理,从而不会污染熔体。本文主要介绍脉冲磁致振荡凝固技术的发明过程、基本的理论基础、细化机理、国内外研究现状及应用进展等。

关键词 电磁场脉冲磁致振荡(PMO)等轴晶晶核结晶雨Lorentz力流速    
Abstract

With the development of metallurgical technology, some requirements such as high homogenization, high purification, superfine crystallization and low consumption have been put forward for the properties of metal materials. The pulse electromagnetic field has become the development direction of the new generation of metallurgy due to its energy saving, convenient application and refinement effect. The technology of pulse electromagnetic field in solidification includes electric current pulse, pulsed magnetic field and pulsed magneto oscillation (PMO). Based on the theories of pulsed current and electromagnetic stirring, the pulse current is applied to the induction coil in PMO technique. The melt is induced by magnetic field to produce electromagnetic force, and thereby, the non-contact treatment can be achieved to avoid dirtying the melt. In this paper, PMO technique is introduced, including invention process, theoretical basis, refinement mechanism, research status and its applications.

Key wordselectromagnetic field    pulsed magneto oscillation (PMO)    equiaxed grain    crystalnucleus    crystal shower    Lorentz force    flow velocity
收稿日期: 2017-12-14     
ZTFLH:  TG111.4  
基金资助:资助项目 国家自然科学基金资助Nos.51504048、50574056和U1760204,国家重点研发计划项目No.2017YFB0701800
作者简介:

作者简介 龚永勇,男, 1964年生,博士

引用本文:

龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation. Acta Metall Sin, 2018, 54(5): 757-765.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00536      或      https://www.ams.org.cn/CN/Y2018/V54/I5/757

图1  隔离网水平放置下试样纵向切面的组织[46]
图2  液面脉冲磁致振荡(SPMO)处理装置[38]
图3  脉冲磁致振荡作用下的测温曲线[49]
图4  熔点以上1.3 K时PMO处理与不处理凝固组织细化图[54]
图5  有无PMO处理时样品平均晶粒尺寸与冷却速率的关系[53]
图6  用PMO处理的冷却曲线分段示意图[53]
图7  PMO处理不同阶段的晶粒尺寸及铸态组织[53]
图8  未经PMO处理和经PMO处理后垂直放置隔离网的样品纵向切面结构[46]
图9  空腔中晶核的生长[54]
图10  二冷区脉冲磁致振荡试验示意图[57]
图11  GCr15轴承钢铸坯横截面的宏观组织[57]
[1] Maxwell I, Hellawell A.A simple model for grain refinement during solidification[J]. Acta Metall., 1975, 23: 229
[2] Greer A L, Bunn A M, Tronche A, et al.Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B[J]. Acta Mater., 2000, 48: 2823
[3] Easton M A, Stjohn D H.A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Mater., 2001, 49: 1867
[4] Ma Q, Cao P, Easton M A, et al.An analytical model for constitutional supercooling-driven grain formation and grain size prediction[J]. Acta Mater., 2010, 58: 3262
[5] Jian X, Xu H, Meek T T, et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Mater. Lett., 2005, 59: 190
[6] Jian X G, Meek T T, Han Q Y.Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration[J]. Scr. Mater., 2006, 54: 893
[7] Liu X B, Osawa Y, Takamori S, et al, Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Mater. Lett., 2008, 62: 2872
[8] Ramirez A, Ma Q, Davis B, et al.Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys[J]. Scr. Mater., 2008, 59: 19
[9] Gao D M, Li Z J, Han Q Y, et al.Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy[J]. Mater. Sci. Eng., 2009, A502: 2
[10] Shu D, Sun B D, Mi J W, et al.A high-speed imaging and modeling study of dendrite fragmentation caused by ultrasonic cavitation[J]. Metall. Mater. Trans., 2012, 43A: 3755
[11] Griffiths W D, McCartney D G. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys[J]. Mater. Sci. Eng., 1996, A216: 47
[12] Eckert S, Willers B, Nikrityuk P A, et al. Application of a rotating magnetic field during directional solidification of Pb-Sn alloys: Consequences on the CET [J]. Mater. Sci. Eng., 2005, A413-414: 211
[13] Willers B, Eckert S, Michel U, et al.The columnar-to-equiaxed transition in Pb-Sn alloys affected by electromagnetically driven convection[J]. Mater. Sci. Eng., 2005, A402: 55
[14] Metan V, Eigenfeld K, R?biger D, et al.Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring[J]. J. Alloys Compd., 2009, 487: 163
[15] Kang C G, Yoon J H, Seo Y H.The upsetting behavior of semi-solid aluminum material fabricated by a mechanical stirring proces[J]. J. Mater. Process. Technol., 1997, 66: 30
[16] Sukumaran K, Pai B C, Chakraborty M.The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition[J]. Mater. Sci. Eng., 2004, A369: 275
[17] Vivès C.Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys[J]. Mater. Sci. Eng., 1993, A173: 169
[18] Li M J, Tamura T, Miwa K.Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Mater., 2007, 55: 4635
[19] Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scr. Metall. Mater., 1995, 32: 879
[20] Gao Y L, Li Q S, Gong Y Y, et al.Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field[J]. Mater. Lett., 2007, 61: 4011
[21] Fang Y, Liao X L, Gan C H, et al.Effects of pulsed electric current with main frequency and low voltage on grain refinement of pure aluminum[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 141(方燕, 廖希亮, 甘长红等. 中频低压脉冲电流对纯铝凝固组织的影响[J]. 特种铸造及有色合金, 2006, 26: 141)
[22] Song C J, Guo Y Y, Zhang Y H, et al.Effect of currents on the microstructure of directionally solidified Al-4.5wt%Cu alloy[J]. J. Cryst. Growth, 2011, 324: 235
[23] Vashchenko K I, Chernega D F, Vorobev S L, et al.Effect of electric current on the solidification of cast iron[J]. Met. Sci. Heat Treat., 1974, 16: 261
[24] Zi B T, Liu W J, Yao K F.Study of pulsed magnetic field and pulsed magnetic force during solidification[J]. Tianjin Metall., 2002, (6): 8(訾炳涛, 刘文今, 姚可夫. 凝固过程中的脉冲磁场和脉冲磁力研究[J]. 天津冶金, 2002, (6): 8)
[25] Nakada M, Shiohara Y, Flemings M C.Modification of solidification structures by pulse electric discharging[J]. ISIJ Int., 1990, 30: 27
[26] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[27] Xu Z, Wang X, Liang D, et al.Electric current pulse induced grain refinement in pure aluminium[J]. Mater. Sci. Technol., 2015, 31: 1595
[28] Long P, Wen H, Gu B P.Effects of electric current pulses on mechanical properties and microstructures of as-quenched medium carbon steel[J]. Mater. Sci. Eng., 2016, A662: 404
[29] Lu B, Yang X J, Zhou J, et al.Effect of electric current on diffusion of aluminum in Ti3AlC2 into zirconium alloy[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 645
[30] Chen H, Jie J C, Fu Y, et al.Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1295
[31] Zhang Y J, Hua J S, Wang E G, et al.Numerical analysis of electromagnetic field in the molten steel under pulsed magnetic field[J]. Mater. Sci. Technol., 2010, 18: 639(张永杰, 华骏山, 王恩刚等. 脉冲磁场作用于钢液熔体的电磁场数值模拟[J]. 材料科学与工艺, 2010, 18: 639)
[32] Yan C L, Wang F M, Zhang Q J.Effect of low pressure pulse magnetic field on solidification structure of 45 steel[J]. Met. Funct. Mater., 2015, 22(6): 24(严春亮, 王凤鸣, 张庆军. 低压脉冲磁场对45钢凝固组织的影响[J]. 金属功能材料, 2015, 22(6): 24)
[33] Mei G H, Zhu L G, Zhang Q J, et al.Research status of grain refinement technology with pulsed magnetic field[J]. Foundry Technol., 2015, 36: 403(梅国宏, 朱立光, 张庆军等. 脉冲磁场细晶化技术的研究现状[J]. 铸造技术, 2015, 36: 403)
[34] Zhang D P, Li B, Li L J.Effect of pulse magnetic field on primary recrystallization grain size of high magnetic induction oriented silicon steel[J]. Heat Treat. Met., 2017, 42(3): 34(张大平, 李斌, 李莉娟. 脉冲磁场对高磁感取向硅钢初次再结晶晶粒尺寸的影响[J]. 金属热处理, 2017, 42(3): 34)
[35] Zhang Y H, Zhong H G, Zhai Q J.Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields[J]. J. Iron Steel Res., 2017, 29: 249(张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展[J]. 钢铁研究学报, 2017, 29: 249)
[36] Liu F, Zhang L Y.Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012, 61: 285(刘芳, 张璐云. 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012, 61: 285)
[37] Pei N, Li R X.Mechanism of pulse magneto-oscillation grain refinement on pure Al[J]. China Foundry, 2011, 8: 47
[38] Yin Z X, Gong Y Y, Li B, et al.Refining of pure aluminum cast structure by surface pulsed magneto-oscillation[J]. J. Mater. Process. Technol., 2012, 212: 2629
[39] Zhai Q J, Gong Y Y, Gao Y L, et al.Method and apparatus for fining metal solidified organs by using magneto-oscillation [P]. Chin Pat, CN200510030736.4, 2006(翟启杰, 龚永勇, 高玉来等. 磁致振荡细化金属凝固组织的方法及其装置 [P]. 中国专利, CN200510030736.4, 2006)
[40] Liang D, Liang Z Y, Zhai Q J, et al.Nucleation and grain formation of pure Al under pulsed magneto-oscillation treatment[J]. Mater. Lett., 2014, 130: 48
[41] Li B, Yin Z X, Gong Y Y, et al.Effect of pouring temperature on solidification structure of pure Al under pulse magneto-oscillation[J]. J. Shanghai Univ.(Nat. Sci. Ed.), 2012, 18: 323(李博, 尹振兴, 龚永勇等. 浇注温度对脉冲磁致振荡细化纯铝凝固组织的影响[J]. 上海大学学报(自然科学版), 2012, 18: 323)
[42] Li Q X.The study of the solidification structure of large steel ingots was refined by using the SPM [D]. Shanghai: Shanghai University, 2014(李祺欣. 应用冒口脉冲磁致振荡技术细化大型钢锭凝固组织的探索研究 [D]. 上海: 上海大学, 2014?)
[43] Li Q X, Liang D, Zhai Q J, et al.The solidification structure refinement of SWRCH22A steel billet under pulse magneto-oscillation treatment [A]. TMS 2015 144th Annual Meeting Supplemental Proceedings[C]. Cham: Springer, 2015: 67
[44] Zhang X Z, Zhao J, Yu J H, et al.The effect of surface pulsed magneto-oscillation on solidification of low pressure rotor 30Cr2Ni4MoV steel [A]. TMS 2015 144th Annual Meeting Supplemental Proceedings[C]. Cham: Springer, 2015: 89
[45] Cao T Y, Zhai Q J, Li R X, et al.Effect of magnetic oscillation on inner structure of 65Mn steel[J]. Res. Iron Steel, 2014, 42(6): 35(曹同友, 翟启杰, 李仁兴等. 磁致振荡对65Mn钢铸锭内部组织的影响[J]. 钢铁研究, 2014, 42(6): 35)
[46] Gong Y Y, Luo J, Jing J X, et al.Structure refinement of pure aluminum by pulse magneto-oscillation[J]. Mater. Sci. Eng., 2008, A497: 147
[47] Xu Z S, Li Q X, Liang Z Y, et al.Morphology of the Al-4.5wt% Cu alloy by pulse magneto oscillation treatment[J]. Shanghai Met., 2015, 37(2): 31(徐智帅, 李祺欣, 梁柱元等. 脉冲磁致振荡下Al-4.5wt%Cu合金微观组织形态[J]. 上海金属, 2015, 37(2): 31)
[48] Li Q X, Yu J H, Liang D, et al.Refinement mechanism study of commercial pure Al under pulsed magneto oscillation[J]. Shanghai Met., 2015, 37(4): 4(李祺欣, 俞基浩, 梁冬等. 脉冲磁致振荡细化工业纯铝机制研究[J]. 上海金属, 2015, 37(4): 48)
[49] Liang D, Liang Z Y, Zhai Q J, et al.Nucleation and grain formation of pure Al under Pulsed Magneto-Oscillation treatment[J]. Mater. Lett., 2014, 130: 48
[50] Li B, Yin Z X, Gong Y Y, et al.Effect of temperature field on solidification structure of pure Al under pulse magneto-oscillation[J]. China Foundry, 2011, 8: 172
[51] Zhao J, Cheng Y F, Han K, et al.Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. J. Mater. Process. Technol., 2016, 229: 286
[52] Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143
[53] Edry I, Mordechai T, Frage N, et al.Effects of treatment duration and cooling rate on pure aluminum solidification upon pulse magneto-oscillation treatment[J]. Metall. Mater. Trans., 2016, 47A: 1261
[54] Edry I, Erukhimovitch V, Shoihet A, et al.Effect of impurity levels on the structure of solidified aluminum under pulse magneto-oscillation (PMO)[J]. J. Mater. Sci., 2013, 48: 8438
[55] Edry I, Frage N, Hayun S.The effect of pulse magneto-oscillation treatment on the structure of aluminum solidified under controlled convection[J]. Mater. Lett., 2016, 182: 118
[56] Ban C Y, Cui J Z, Ba Q X, et al.Influence of strong pulsed magnetic field on microstructures of LY12 aluminum alloy[J]. Spec. Cast. Nonferrous Alloys, 2002, 22(4): 12(班春燕, 崔建忠, 巴启先等. 强脉冲磁场对LY12铝合金组织结构的影响[J]. 特种铸造及有色合金, 2002, 22(4): 12)
[57] Cheng Y, Xu Z S, Zhou Z, et al.Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel[J]. Shanghai Met., 2016, 38(4): 54(程勇, 徐智帅, 周湛等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用[J]. 上海金属, 2016, 38(4): 54)
[58] Ni J, Wu C S, Zhong H G, et al.Solidification structure refinement of 2205 duplex stainless steel by pulse magneto-oscillation [A]. TMS 2015 144th Annual Meeting & Exhibition[C]. Cham: Springer, 2015: 39
[1] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[2] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[3] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[4] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[5] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[6] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.
[7] 王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
[8] 毕成, 郭志鹏, LIOTTI E, 熊守美, GRANT P S. 铝合金凝固过程枝晶破碎现象的定量化研究*[J]. 金属学报, 2015, 51(6): 677-684.
[9] 高中堂, 胡锐, 王军, 杨劼人, 李金山. 电磁场下近液相线高温合金熔体处理非枝晶组织的形成[J]. 金属学报, 2014, 50(12): 1471-1477.
[10] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[11] 坚增运,李娜,常芳娥,方雯,赵志伟,董广志,介万奇. Cu熔体中原子团簇在凝固过程中的演变规律分子动力学模拟[J]. 金属学报, 2012, 48(6): 703-708.
[12] 王芳 李宝宽 . 电渣重熔过程中的电磁场和Joule热分析[J]. 金属学报, 2010, 46(7): 794-799.
[13] 杜慧玲 王建中 齐锦刚 何力佳 苍大强. 脉冲电磁场对CoC2O·2H2O粒度的影响[J]. 金属学报, 2009, 45(8): 1019-1024.
[14] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[15] 许秀杰 邓安元 王恩刚 张林涛 张永杰 赫冀成. 高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理[J]. 金属学报, 2009, 45(11): 1330-1335.