Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 126-132    DOI: 10.11900/0412.1961.2017.00532
  本期目录 | 过刊浏览 |
原位(TiB2-TiB)/Cu复合材料组织与性能研究
任建强, 梁淑华(), 姜伊辉, 杜翔
西安理工大学材料科学与工程学院 西安 710048
Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites
Jianqiang REN, Shuhua LIANG(), Yihui JIANG, Xiang DU
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. Acta Metall Sin, 2019, 55(1): 126-132.

全文: PDF(5229 KB)   HTML
摘要: 

采用机械合金化和热压烧结相结合的方法制备出原位TiB2颗粒和TiB晶须混杂增强的铜基复合材料,利用XRD、OM、SEM、TEM研究了复合材料的微观组织,分析了热压烧结过程中的原位反应机理及微观组织对复合材料硬度、导电率及致密度的影响规律。结果表明:原位反应过程为Cu和Ti原始粉末在800 ℃开始反应生成Cu3Ti中间相,在850 ℃时达到Cu3Ti中间相的熔点并在基体中形成液相微区,然后B原子扩散至该液相微区,在继续加热过程中原位析出硼化钛增强相。TiB晶须含量相对较多的复合材料具有较高的硬度,TiB2颗粒含量相对较多的复合材料具有较高的导电率,TiB晶须和TiB2颗粒混杂增强的铜基复合材料则同时兼备了以上2种复合材料的性能优势,其综合性能得到优化。所得烧结态3%(TiB2-TiB)/Cu混杂增强复合材料的硬度和导电率分别达到86.6 HB和70.4% IACS。

关键词 铜基复合材料原位反应TiB2颗粒TiB晶须    
Abstract

Copper matrix composites have attracted a lot of interest regarding their application as electrical materials. However, the development of copper matrix composites has suffered setbacks because of a trade-off between electrical conductivity and strength. In this work, TiB2 particles and TiB whiskers hybrid reinforced copper matrix composites were in situ fabricated by mechanical alloying and hot pressing. The microstructures of hot-pressed composites were characterized by XRD, OM, SEM and TEM. The mechanism of in situ reaction during hot pressing process and the influence of microstructures on physical properties of hot-pressed composites were analyzed. The Cu and Ti raw powders were firstly reacted at 800 ℃ by forming Cu3Ti transient phase. Then, the Cu-Ti liquid micro-zone was formed at 850 ℃, which is higher than the melting point of Cu3Ti phase. With the increasing of temperature further, TiB2 particles and TiB whiskers were formed in the liquid micro-zone by the diffusion of B atoms from copper matrix. When the reinforcing phase is consisted of mainly TiB whiskers, the hardness of composites is relatively high. But the composites reinforced mainly by TiB2 particles have a higher electrical conductivity. The combined properties of hybrid reinforced copper matrix composites were optimized due to the combination action of TiB2 particles and TiB whisker. For the case of 3%(TiB2-TiB)/Cu composites, the hardness and the electrical conductivity are 86.6 HB and 70.4% IACS, respectively.

Key wordscopper matrix composite    in situ reaction    TiB2 particle    TiB whisker
收稿日期: 2017-12-11     
ZTFLH:  TB311  
基金资助:国家自然科学基金项目Nos.U1502274、51631002和51501149,以及陕西省重点研发计划项目No.2017ZDXM-GY-028
作者简介:

作者简介 任建强,男,1993年生,硕士生

Sample Composite Composite Cu powder
No. powder I powder II
(Ti∶B=1∶1) (Ti∶B=1∶2)
1 1.0 - 99.0
2 0.5 0.5 99.0
3 - 1 99.0
4 3.0 - 97.0
5 1.5 1.5 97.0
6 - 3.0 97.0
7 5.0 - 95.0
8 2.5 2.5 95.0
9 - 5.0 95.0
表1  原位(TiB2-TiB)/Cu复合材料原料配比
图1  烧结态(TiB2-TiB)/Cu复合材料的XRD谱
图2  含3%增强相时烧结态铜基复合材料的SEM像
图3  3%(TiB2-TiB)/Cu复合材料(样品No.5)的TEM明场像及SAED谱
图4  5%(TiB2-TiB)/Cu复合材料的DSC曲线
图5  5%(TiB2-TiB)/Cu复合材料原位反应过程中不同阶段的XRD谱
图6  5%(TiB2-TiB)/Cu复合材料原位反应不同阶段的OM像
图7  Cu-Ti-B体系原位反应过程示意图
Sample Brinell Electrical Relative density
No. hardness conductivity %
HB %IACS
1 66.30 77.93 99.9
2 62.30 83.10 99.8
3 54.30 89.31 99.9
4 98.30 50.70 98.1
5 86.60 70.40 97.2
6 78.50 72.20 97.9
7 115.00 30.90 96.4
8 105.90 50.20 96.9
9 84.90 63.40 96.8
表2  烧结态复合材料的硬度、导电率和致密度
[1] Koch C C.Nanostructured Materials: Processing, Properties and Applications [M]. 2nd Ed., Norwich: William Andrews Publishing, 2007: 397
[2] Shen Y T, Cui C X, Meng F B, et al.Fabrication of Cu-A12O3 composites with high strength and electric conductivity[J]. Acta Metall. Sin., 1999, 35: 889(申玉田, 崔春翔, 孟凡斌等. 高强度高导电率Cu-Al2O3复合材料的制备[J]. 金属学报, 1999, 35: 889)
[3] Wang N Y, Tu J P, Yang Y Z, et al.Preparation and microstructure of nanoscale TiB2/Cu in-situ composites[J]. Chin. J. Nonferrous Met., 2002, 12: 151(王耐艳, 涂江平, 杨友志等. 原位反应纳米TiB2/Cu复合材料的制备和微结构[J]. 中国有色金属金属学报, 2002, 12: 151)
[4] Lu K.The future of metals[J]. Science, 2010, 328: 319
[5] Yan C K, Zhou Y C.Mechanical properties of 2SnC particulate reinforced Cu matrix composites[J]. Acta Metall. Sin., 2003, 39: 99(闫程科, 周延春. Ti2SnC颗粒增强铜基复合材料的力学性能[J]. 金属学报, 2003, 39: 99)
[6] Zhou Y, Zhu X K, Su Y, et al.Reactive self-generated Cu-TiB2-TiC composites[J]. Chin. J. Nonferrous Met., 1998, 8(Suppl.2): 15(周芸, 朱心坤, 苏云 等. 反应自生Cu-TiB2-TiC复合材料 [J]. 中国有色金属金属学报, 1998, 8(增刊): 15)
[7] Guo M X, Wang M P, Shen K, et al.Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts[J]. J. Alloys Compd., 2008, 460: 585
[8] Sembosh S, Al-Kassab T, Gemma R, et al.Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity[J]. Ultramicroscopy, 2009, 109: 593
[9] Bagheri G A.The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. J. Alloys Compd., 2016, 676: 120
[10] Madtha S, Lee C, Chandran K S R. Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic[J]. J. Am. Ceram. Soc., 2008, 91: 1319
[11] Zou C L, Kang H J, Wang W, et al.Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. J. Alloys Compd., 2016, 687: 312
[12] Guo M X, Wang M P, Wang M P.Relationship between microstructure, properties and reaction conditions for Cu-TiB2 alloys prepared by in situ reaction[J]. Acta Mater., 2009, 57: 4568
[13] Wang F C, Zhang Z H, Luo J, et al.A novel rapid route for in situ synthesizing TiB-TiB2 composites[J]. Compos. Sci. Technol., 2009, 69: 2682
[14] Wen G, Li S B, Zhang B S, et al.Reaction synthesis of TiB2-TiC composites with enhanced toughness[J]. Acta Mater., 2001, 49: 1463
[15] Sobhani M, Arabi H, Mirhabibi A, et al.Microstructural evolution of copper-titanium alloy during in-situ formation of TiB2 particles[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2994
[16] Jiang Y H, Wang C, Liang S H, et al.TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper[J]. Mater. Charact., 2016, 121: 76
[17] Jiang Y H, Li D, Liang S H, et al.Phase selection of titanium boride in copper matrix composites during solidification[J]. J. Mater. Sci., 2017, 52: 2957
[18] Gorsse S, Miracle D B.Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements[J]. Acta Mater., 2003, 51: 2427
[19] Liu B X, Huang L J, Geng L, et al.Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing[J]. Mater. Sci. Eng., 2014, A595: 257
[20] Selvakumar M, Chandrasekar P, Mohanraj M, et al.Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti-TiB composites[J]. Mater. Lett., 2015, 144: 58
[21] Feng H B, Zhou Y, Jia D C, et al.Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites[J]. Cryst. Growth Des., 2006, 6: 1626
[22] Meng Q C, Feng H B, Chen G C, et al.Defects formation of the in situ reaction synthesized TiB whiskers[J]. J. Cryst. Growth, 2009, 311: 1612
[23] Rahoma H K S, Chen Y, Wang X P, et al. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy[J]. J. Alloys Compd., 2015, 627: 415
[24] Li S F, Kondoh K, Lmai H, et al.Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion[J]. Mater. Des., 2016, 95: 127
[25] Tang R Z, Tian R Z.Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009: 1(唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 1)
[26] Verhoeven J D, Downing H L, Chumbley L S, et al.The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J. Appl. Phys., 1989, 65: 1293
[27] Qu L, Wang E G, Han K, et al.Studies of electrical resistivity of an annealed Cu-Fe composite[J]. J. Appl. Phys., 2013, 113: 173708
[1] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[2] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[4] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[5] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[8] 杨滨; 王锋; 段先进; 张济山; 陈国香 . 熔铸-原位反应喷射成形7075/TiC复合材料的拉伸性能[J]. 金属学报, 2001, 37(3): 311-314 .
[9] 张来启; 孙祖庆; 张跃; 杨王玥; 陈光南 . 原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能[J]. 金属学报, 2001, 37(3): 325-331 .
[10] 吕维洁; 卞玉君 . 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36(1): 104-108 .
[11] 严有为; 魏伯康; 傅正义; 林汉同; 袁润章 . Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究[J]. 金属学报, 1999, 35(9): 909-912 .
[12] 李建林; 江东亮; 谭寿洪 . 原位生成SiC/TiSi2纳米复合材料的显微结构[J]. 金属学报, 1999, 35(8): 893-896 .
[13] 吕维洁; 卞玉君; 张小农; 张荻; 方平伟; 吴人洁 . 原位合成TiC/Ti基复合材料增强体的生长机制[J]. 金属学报, 1999, 35(5): 536-540 .
[14] 严有为; 魏伯康; 傅正义; 林汉同; 袁润章 . 原位TiC颗粒增强铁基复合材料及其组织形成机理[J]. 金属学报, 1999, 35(10): 1117-1120 .
[15] 杨滨;王玉庆;周本濂. 铝熔体中原位反应生成TiB_2颗粒的机制[J]. 金属学报, 1998, 34(1): 100-106.