|
|
高熵合金的变形行为及强韧化 |
吕昭平( ), 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉 |
北京科技大学新金属材料国家重点实验室 北京 100083 |
|
Deformation Behavior and Toughening of High-Entropy Alloys |
Zhaoping LU( ), Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
Zhaoping LU,
Zhifeng LEI,
Hailong HUANG,
Shaofei LIU,
Fan ZHANG,
Dabo DUAN,
Peipei CAO,
Yuan WU,
Xiongjun LIU,
Hui WANG.
Deformation Behavior and Toughening of High-Entropy Alloys[J]. Acta Metall Sin, 2018, 54(11): 1553-1566.
[1] | Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299 | [2] | Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213 | [3] | Miao J, Slone C E, Smith T M, et al.The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater., 2017, 132: 35 | [4] | Senkov O N, Wilks G B, Miracle D B, et al.Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758 | [5] | Daoud H M, Manzoni A M, V?lkl R, et al.Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17-Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air[J]. Adv. Eng. Mater., 2015, 17: 1134 | [6] | Senkov O N, Miller J D, Miracle D B, et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529 | [7] | Gludovatz B, Hohenwarter A, Catoor D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153 | [8] | Zhou Y J, Zhang Y, Wang Y L, et al.Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Appl. Phys. Lett., 2007, 90: 181904 | [9] | Wang W R, Wang W L, Wang S C, et al.Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44 | [10] | Li Z M, Pradeep K G, Deng Y, et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227 | [11] | Huang H L, Wu Y, He J Y, et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678 | [12] | He J Y, Wang H, Huang H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Mater., 2016, 102: 187 | [13] | Gao X Z, Lu Y P, Zhang B, et al.Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59 | [14] | Lucas M S, Wilks G B, Mauger L, et al.Absence of long-range chemical ordering in equimolar FeCoCrNi[J]. Appl. Phys. Lett., 2012, 100: 251907 | [15] | Yeh J W.Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65: 1759 | [16] | Yeh J W, Chang S Y, Hong Y D, et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Mater. Chem. Phys., 2007, 103: 41 | [17] | Courtney T H.Mechanical Behavior of Materials [M]. 2nd Ed., Long Grove, IL: Waveland Press, 2005: 186 | [18] | Fleischer R L.Rapid solution hardening, dislocation mobility, and the flow stress of crystals[J]. J. Appl. Phys., 1962, 33: 3504 | [19] | Labusch R.A statistical theory of solid solution hardening[J]. Phys. Status Solidi, 1970, 41B: 659 | [20] | Senkov O N, Scott J M, Senkova S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043 | [21] | Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys[J]. Acta Mater., 2015, 85: 14 | [22] | Zhang Y, Zhou Y J, Lin J P, et al.Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534 | [23] | Zhang F X, Zhao S J, Jin K, et al.Local structure and short-range order in a NiCoCr solid solution alloy[J]. Phys. Rev. Lett., 2017, 118: 205501 | [24] | Santodonato L J, Zhang Y, Feygenson M, et al.Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy[J]. Nat. Commun., 2015, 6: 5964 | [25] | Singh P, Smirnov A V, Johnson D D.Atomic short-range order and incipient long-range order in high-entropy alloys[J]. Phys. Rev., 2015, 91B: 224204 | [26] | Li C, Xue Y F, Hua M T, et al.Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1-x high-entropy alloys[J]. Mater. Des., 2016, 90: 601 | [27] | Wang F J, Zhang Y, Chen G L.Atomic packing efficiency and phase transition in a high entropy alloy[J]. J. Alloys Compd., 2009, 478: 321 | [28] | Tong Y, Velisa G, Zhao S, et al.Evolution of local lattice distortion under irradiation in medium-and high-entropy alloys[J]. Materialia, 2018, doi: 10.1016/j.mtla.2018.06.008 | [29] | He Q F, Yang Y.On lattice distortion in high entropy alloys[J]. Front. Mater., 2018, 5: 42 | [30] | Song H Q, Tian F Y, Hu Q M, et al.Local lattice distortion in high-entropy alloys[J]. Phys. Rev. Mater., 2017, 1: 023404 | [31] | Klepaczko J R.Physical-state variables—The key to constitutive modeling in dynamic plasticity[J]. Nucl. Eng. Des., 1991, 127: 103 | [32] | Neuh?user H, Schwink C.Materials Science and Technology, Solid Solution Strengthening[M]. Vol.6, Weinheim: VCH, 1993: 234 | [33] | Liu S Y, Wei Y J.The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys[J]. Ext. Mech. Lett., 2017, 11: 84 | [34] | Otto F, Dlouhy A, Somsen C, et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743 | [35] | Laplanche G, Kostka A, Horst O M, et al.Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Mater., 2016, 118: 152 | [36] | He J Y, Zhu C, Zhou D Q, et al.Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures[J]. Intermetallics, 2014, 55: 9 | [37] | He J Y, Liu W H, Wang H, et al.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Mater., 2014, 62: 105 | [38] | Senkov O N, Semiatin S L.Microstructure and properties of a refractory high-entropy alloy after cold working[J]. J. Alloys Compd., 2015, 649: 1110 | [39] | Senkov O N, Scott J M, Senkova S V, et al.Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062 | [40] | Senkov O N, Wilks G B, Scott J M, et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698 | [41] | Takeuchi A, Amiya K, Wada T, et al.High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J]. JOM, 2014, 66: 1984 | [42] | Gao M C, Alman D E.Searching for next single-phase high-entropy alloy compositions[J]. Entropy, 2013, 15: 4504 | [43] | Feuerbacher M, Heidelmann M, Thomas C.Hexagonal high-entropy alloys[J]. Mater. Res. Lett., 2015, 3: 1 | [44] | Soler R, Evirgen A, Yao M, et al.Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure[J]. Acta Mater., 2018, 156: 86 | [45] | Rogal ?, Czerwinski F, Jochym P T, et al.Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions[J]. Mater. Des., 2016, 92: 8 | [46] | Wang W R, Wang W L, Yeh J W.Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. J. Alloys Compd., 2014, 589: 143 | [47] | Takeuchi A, Amiya K, Wada T, et al.Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy[J]. Intermetallics, 2016, 69: 103 | [48] | Liu W H, Lu Z P, He J Y, et al.Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J]. Acta Mater., 2016, 116: 332 | [49] | Lin C M, Tsai H L.Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy[J]. Mater. Chem. Phys., 2011, 128: 50 | [50] | Liu W H, Wu Y, He J Y, et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scr. Mater., 2013, 68: 526 | [51] | Lu Y P, Dong Y, Guo S, et al.A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200 | [52] | Lu Y P, Gao X Z, Jiang L, et al.Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143 | [53] | Jiang H, Han K M, Gao X X, et al.A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101 | [54] | Wu D, Zhang J Y, Huang J C, et al.Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals[J]. Scr. Mater., 2013, 68: 118 | [55] | Sun S J, Tian Y Z, Lin H R, et al.Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement[J]. Mater. Sci. Eng., 2018, A712: 603 | [56] | Juan C C, Tsai M H, Tsai C W, et al.Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Mater. Lett., 2016, 184: 200 | [57] | Seol J B, Bae J W, Li Z M, et al.Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Mater., 2018, 151: 366 | [58] | Fan X M, Xu L J.Review on strengthening mechanisms and models of metal materials[J]. Found. Technol., 2017, 38: 2796(范晓嫚, 徐流杰. 金属材料强化机理与模型综述[J]. 铸造技术, 2017, 38: 2796) | [59] | Stepanov N D, Shaysultanov D G, Salishchev G A, et al.Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J]. J. Alloys Compd., 2015, 628: 170 | [60] | Liu S F, Wu Y, Wang H T, et al.Stacking fault energy of face-centered-cubic high entropy alloys[J]. Intermetallics, 2018, 93: 269 | [61] | Wu Z, Bei H, Pharr G M, et al.Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428 | [62] | Wang Z W, Baker I, Cai Z H, et al.The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys[J]. Acta Mater., 2016, 120: 228 | [63] | Stepanov N D, Shaysultanov D G, Chernichenko R S, et al.Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy[J]. J. Alloys Compd., 2017, 693: 394 | [64] | Xie Y C, Cheng H, Tang Q H, et al.Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering[J]. Intermetallics, 2018, 93: 228 | [65] | Chen Y W, Li Y K, Cheng X W, et al.Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x= 0.05, 0.1, 0.2) high-entropy alloys[J]. Mater. Lett., 2018, 228: 145 | [66] | Jiang L, Lu Y P, Wu W, et al.Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions[J]. J. Mater. Sci. Technol., 2016, 32: 245 | [67] | He F, Wang Z J, Cheng P, et al.Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. J. Alloys Compd., 2016, 656: 284 | [68] | Huang S, Li W, Lu S, et al.Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy[J]. Scr. Mater., 2015, 108: 44 | [69] | Deng Y, Tasan C C, Pradeep K G, et al.Design of a twinning-induced plasticity high entropy alloy[J]. Acta Mater., 2015, 94: 124 | [70] | Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602 | [71] | Laplanche G, Kostka A, Reinhart C, et al.Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Mater., 2017, 128: 292 | [72] | Okamoto N L, Fujimoto S, Kambara Y, et al.Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy[J]. Sci. Rep., 2016, 6: 35863 | [73] | Herrera C, Ponge D, Raabe D.Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability[J]. Acta Mater., 2011, 59: 4653 | [74] | Sun F, Zhang J Y, Marteleur M, et al.Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Mater., 2013, 61: 6406 | [75] | Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770 | [76] | Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141 | [77] | Li Z M, K?rmann F, Grabowski B, et al.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Mater., 2017, 136: 262 | [78] | Rogal ?, Kalita D, Tarasek A, et al.Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy[J]. J. Alloys Compd., 2017, 708: 344 | [79] | Rogal ?, Kalita D, Litynska-Dobrzynska L.CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics, 2017, 86: 104 | [80] | Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55 | [81] | Hadraba H, Chlup Z, Dlouhy A, et al.Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy[J]. Mater. Sci. Eng., 2017, A689: 252 | [82] | Chen S T, Tang W Y, Kuo Y F, et al.Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J]. Mater. Sci. Eng., 2010, A527: 5818 | [83] | Tsai M H, Yuan H, Cheng G M, et al.Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy[J]. Intermetallics, 2013, 32: 329 | [84] | Zhao Y L, Yang T, Zhu J H, et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J]. Scr. Mater., 2018, 148: 51 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|