Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1537-1552    DOI: 10.11900/0412.1961.2018.00360
  材料与工艺 本期目录 | 过刊浏览 |
钛合金粉末热等静压近净成形研究进展
徐磊(), 郭瑞鹏, 吴杰, 卢正冠, 杨锐
中国科学院金属研究所 沈阳 110016
Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder
Lei XU(), Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. Acta Metall Sin, 2018, 54(11): 1537-1552.

全文: PDF(6988 KB)   HTML
摘要: 

本文简述了近年来国内外钛合金粉末热等静压近净成形的研究现状和应用进展情况,从典型低温钛合金研制、高温钛合金研制、钛铝金属间化合物研制、粉末致密化的有限元仿真4个方面对中国科学院金属研究所在钛合金粉末冶金近净成形领域的主要研究进展加以简要介绍,并对该技术未来的发展趋势进行了展望。

关键词 钛合金粉末冶金氢泵叶轮热等静压近净成形    
Abstract

The research status and application of powder metallurgy (PM) titanium alloys in connection with near net shape forming technology using hot isostatic pressing (HIP) are reviewed in this paper. A brief summary of historic developments with production of clean prealloyed powder and the use of computer simulation techniques in powder densification as important milestones is presented first. The bulk of the paper is concerned with progress made in the last 15 years, especially in the last decade, citing examples from the authors' group. Four types of alloys are covered: a cryogenic titanium alloy, Ti-5Al-2.5Sn with extra-low interstitial (ELI), which is used to make impeller for hydrogen pump of rocket engine, a high temperature titanium alloy Ti55, which is intended for long term service at 550 ℃ in engine applications, and two Ti-Al based intermetallic compounds including both γ-TiAl and an orthorhombic alloy based on Ti2AlNb. Comparisons in mechanical property were made between the PM alloys and their wrought and cast versions wherever possible. Key issues influencing densification, such as powder size segregation and gas pores in large powders, variation in powder surface oxygen content with powder store time, oxygen layer on γ-TiAl powder surface due to abnormally high fraction of the α2-Ti3Al phase as a result of rapid solidification of the powder, were discussed. The final section is dedicated to finite element modelling of powder densification, taking into account such factors as tooling design and stress shielding effect during HIPing. Future research directions are suggested in the summary section.

Key wordstitanium alloy    powder metallurgy    hydrogen pump impeller    hot isostatic pressing    near net shape forming
收稿日期: 2018-08-01     
ZTFLH:  TG146.23  
作者简介:

作者简介 徐 磊,男,1977年生,研究员, 博士

图1  2种制备钛合金预合金粉末典型工艺示意图
图2  中国科学院金属研究所粉末冶金近净成形工艺流程图
Sample Al Sn Fe Si C O N H Ti
ASTM B348 4.50~5.75 2.00~3.00 <0.25 <0.05 <0.05 <0.12 <0.035 <0.0125 Bal.
Electrode 5.01 2.49 0.06 0.006 0.006 0.076 0.005 0.001 Bal.
Powder 5.14 2.50 0.06 0.006 0.006 0.080 0.006 0.001 Bal.
表1  Ti-5Al-2.5Sn ELI预合金粉末的化学成分
图3  中国科学院金属研究所开发的钛合金粉末真空加热动态除气装置
Sample 20 ℃ -253 ℃
σb / MPa δ / % αKU2 / (kJm-2) KIC / (MPam1/2) σb / MPa δ / %
PM impeller 805 15.5 620 103 1440 18.0
Wrought[51] 826 14.6 600 115 1460 17.6
表2  Ti-5Al-2.5Sn ELI粉末合金的力学性能[51]
图4  叶轮包套/模具设计示意图[51]
图5  粉末振动过程中的粒度偏析示意图
图6  简单圆柱形包套热等静压前(左)后(右)尺寸的变化对比图
图7  中国科学院金属研究所研制的Ti-5Al-2.5Sn ELI粉末冶金氢泵叶轮
图8  940 ℃热等静压后Ti55粉末合金的显微组织[47]
State T / ℃ σb / MPa σs / MPa δ / % ψ / %
As-HIPed 20 974 921 16.0 28.4
600 586 465 15.8 22.9
960 ℃/1.5 h/AC+600 ℃/4 h/AC 20 994 902 14.8 39.0
600 655 510 20.8 34.5
990 ℃/1.5 h/AC+600 ℃/4 h/AC 20 1005 902 14.3 30.3
600 650 509 22.5 37.2
表3  不同热处理途径下Ti55粉末合金的20和600 ℃拉伸性能[47]
图9  铸造、粉末和锻造Ti55合金热处理后的20和600 ℃拉伸性能[47]
图10  AI、AII和AIII Ti55合金的拉伸性能
图11  Ti55粉末合金薄壁异形筒体[63]
图12  铸造和粉末γ-TiAl合金的显微组织和织构比较[75]
Alloy T / ℃ σs / MPa σb / MPa δ / %
Cast TiAl RT 519.14 581.31 1.16
650 396.51 546.66 4.00
PM TiAl RT 618.95 644.72 1.38
650 433.80 584.80 7.60
表4  典型铸造与粉末冶金γ-TiAl合金的拉伸性能[75]
图13  中国科学院金属研究所研制的γ-TiAl粉末冶金部件
图14  Ti-22Al-24Nb-0.5Mo坯料的Micro-CT分析[92]
图15  固溶温度对粉末Ti2AlNb合金室温拉伸性能的影响[92]
Ageing treatment T / ℃ σs / MPa σb / MPa δ / % L / h Microstructure
980 ℃/2 h/AC 20 992.12 1061.99 14.12 22.34 Equiaxed
650 755.10 1044.10 6.67
980 ℃/2 h/AC+800 ℃/24 h/AC 20 1066.29 1133.47 2.37 19.67 Lamellar
650 754.50 910.60 6.67
980 ℃/2 h/AC+830 ℃/24 h/AC 20 1005.74 1119.20 6.40 52.68 Lamellar
650 711.80 832.70 9.67
980 ℃/2 h/AC+850 ℃/24 h/AC 20 979.15 1100.34 7.40 56.97 Lamellar
650 694.80 828.40 12.67
980 ℃/2 h/AC+880 ℃/24 h/AC 20 919.48 1038.23 8.24 82.28 Lamellar
650 666.13 788.33 6.67
980 ℃/2 h/AC+900 ℃/24 h/AC 20 920.30 1038.60 12.39 88.08 Lamellar
650 675.77 770.80 6.89
1200 ℃/2 h/FC+760 ℃/14 h/AC 20 820.92 1003.63 3.72 200.00 Widmanst?tten
表5  时效处理对粉末冶金Ti2AlNb合金拉伸性能与高温持久寿命的影响[93]
图16  热等静压前后粉末坯料二维对称截面的模拟结果[51]
Position Actual size /mm Designed size /mm Relative error / %
I 14.88 15.00 0.80
II 42.28 42.00 0.67
III 5.07 5.00 1.40
IV 64.57 64.00 0.90
表6  粉末冶金叶轮关键部位尺寸和设计尺寸对比
图17  包套热等静压不均匀致密化示意图
图18  利用粉末冶金近净成形工艺制备的Ti2AlNb合金复杂环形件
图19  包套直径对粉末Ti2AlNb合金相对密度的影响[65]
[1] Atkinson H V, Davies S.Fundamental aspects of hot isostatic pressing: An overview[J]. Metall. Mater. Trans., 2000, 31A: 2981
[2] Loh N L, Sia K Y.An overview of hot isostatic pressing[J]. J. Mater. Process. Technol., 1992, 30: 45
[3] Ran G, Zhou J E, Wang Q G.The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy[J]. J. Alloys Compd., 2006, 421: 80
[4] Nemat-Nasser S, Guo W G, Nesterenko V F, et al.Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: Experiments and modeling[J]. Mech. Mater., 2001, 33: 425
[5] McNeese M D, Lagoudas D C, Pollock T C. Processing of TiNi from elemental powders by hot isostatic pressing[J]. Mater. Sci. Eng., 2000, A280: 334
[6] Samarov V, Seliverstov D, Froes F H.In: Qian M, Froes F H, eds.,Titanium Powder Metallurgy [M]. Oxford: Butterworth-Heinemann, 2015: 313
[7] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[8] Guo R P, Xu L, Wu J, et al.Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response[J]. Mater. Sci. Eng., 2015, A639: 327
[9] Wang L, Lang Z B, Shi H P.Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 639
[10] Froes F H, Mashl S J, Hebeisen J C, et al.The technologies of titanium powder metallurgy[J]. JOM, 2004, 56(11): 46
[11] Zhang K, Mei J, Wain N, et al.Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples[J]. Metall. Mater. Trans., 2010, 41A: 1033
[12] Guo R P, Xu L, Zong B Y, et al.Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Mater. Des., 2016, 99: 341
[13] Yuan W X, Mei J, Samarov V, et al.Computer modelling and tooling design for near net shaped components using hot isostatic pressing[J]. J. Mater. Process. Technol., 2007, 182: 39
[14] Wei Q S, Xue P J, Liu G C, et al.Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process[J]. Int. J. Adv. Manuf. Technol., 2014, 74: 1667
[15] Baccino R, Moret F, Pellerin F, et al.High performance and high complexity net shape parts for gas turbines: The ISOPREC? powder metallurgy process[J]. Mater. Des., 2000, 21: 345
[16] Guo R P, Xu L, Chen Z Y, et al.Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing[J]. Mater. Sci. Eng., 2017, A706: 57
[17] Yan M, Xu W, Dargusch M S, et al.Review of effect of oxygen on room temperature ductility of titanium and titanium alloys[J]. Powder Metall., 2014, 57: 251
[18] Xu L, Wu J, Cui Y Y, et al.In: Kim Y W, Smarsly W, Lin J P, et al eds., Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [M]. Hoboken: Wiley, 2014: 195
[19] Rajenthirakumar D, Jagadeesh K A.Analysis of interaction between geometry and efficiency of impeller pump using rapid prototyping[J]. Int. J. Adv. Manuf. Technol., 2009, 44: 890
[20] Zhang X H, Shan Q, Chen Y L, et al.Application and development of titanium alloys for aircrafts[J]. Mater. China, 2011, 30(6): 28(张绪虎, 单群, 陈永来等. 钛合金在航天飞行器上的应用和发展[J]. 中国材料进展, 2011, 30(6): 28)
[21] Kanemoto T, Shimojyo M, Kawashima R, et al.Turbo-pump with isolated two stage impellers for future rocket engine (Trial to drive impellers independently)[J]. J. Therm. Sci., 2008, 17: 28
[22] Lütjering G, Williams J C.Titanium: Engineering Materials and Processes[M]. 2nd Ed., Berlin: Springer, 2007: 90
[23] Zhang K.The microstructure and properties of hipped powder Ti alloys [D]. Birmingham: University of Birmingham, 2010
[24] Fang Z Z, Paramore J D, Sun P, et al.Powder metallurgy of titanium—Past, present, and future[J]. Int. Mater. Rev., 2018, 7: 407
[25] Rabin B H, Smolik G R, Korth G E.Characterization of entrapped gases in rapidly solidified powders[J]. Mater. Sci. Eng., 1990, A124: 1
[26] Guo R P, Xu L, Zong B Y P, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 735
[27] Li S G, Lü H J, He S H, et al.Special forming process of cryogenic complicated structural parts[J]. Aerosp. Mater. Technol., 2012, (1): 82(李圣刚, 吕宏军, 何士桓等. 低温复杂结构件特种成形工艺[J]. 宇航材料工艺, 2012, (1): 82)
[28] Lin G K.Study on numerical simulation process and component properties of near net hot isostatic pressing by Ti6Al4V powder [D]. Wuhan: Huazhong University of Science and Technology, 2012(蔺广科. 钛合金热等静压近净成形过程数值模拟及制件性能研究 [D]. 武汉: 华中科技大学, 2012)
[29] Wang J W.Study on hot isostatic pressing near net shaping technology of difficult processing materials and their mechanical properties [D]. Wuhan: Huazhong University of Science and Technology, 2012(王基维. 难加工材料热等静压近净成形工艺基础及零件性能研究 [D]. 武汉: 华中科技大学, 2012)
[30] Liu G C.Metal powders densification under hot isostatic pressing: Numerical simulation and experiment [D]. Wuhan: Huazhong University of Science and Technology, 2011(刘国承. 金属粉末热等静压致密化数值模拟与试验研究 [D]. 武汉: 华中科技大学, 2011)
[31] Cai C.Key technology study for integral fabrication of high-performance titanium alloy component by hot isostatic pressing [D]. Wuhan: Huazhong University of Science and Technology, 2017(蔡超. 高性能钛合金材料的热等静压制备与成形一体化关键技术研究 [D]. 武汉: 华中科技大学, 2017)
[32] Xue Y, Lang L H, Bu G L, et al.Densification modeling of titanium alloy powder during hot isostatic pressing[J]. Sci. Sinter., 2011, 43: 247
[33] Lang L H, Bu G L, Xue Y, et al.Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing[J]. J. Plast. Eng., 2011, 18(4): 34(郎利辉, 布国亮, 薛勇等. 钛合金热等静压模拟本构关键参数确定及工艺优化[J]. 塑性工程学报, 2011, 18(4): 34)
[34] Wang G, Xu L, Tian Y X, et al.Flow behavior and microstructure evolution of a P/M TiAl alloy during high temperature deformation[J]. Mater. Sci. Eng., 2011, A528: 6754
[35] Wang G, Xu L, Wang Y, et al.Processing maps for hot working behavior of a PM TiAl alloy[J]. J. Mater. Sci. Technol., 2011, 27: 893
[36] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples [J]. Mater. Sci. Eng., 2006, A435-436: 638
[37] Xu L, Bai C G, Liu D, et al.In: Kim Y W, Morris D G, Yang R, et al eds., Structural Aluminides for Elevated Temperature Applications [M]. Warrendale, PA: TMS, 2008: 179
[38] Xu L, Guo R P, Bai C G, et al.Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J. Mater. Sci. Technol., 2014, 30: 1289
[39] Guo R P, Xu L, Bai C G, et al.Effects of can design on tensile properties of typical powder metallurgy titanium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 2050(郭瑞鹏, 徐磊, 柏春光等. 包套设计对典型粉末钛合金拉伸性能的影响[J]. 中国有色金属学报, 2014, 24: 2050)
[40] Guo R P, Xu L, Lei J F, et al.Effects of porosity and re-HIP on properties of Ti-6Al-4V alloy from atomized powder[J]. Appl. Mech. Mater., 2014, 552: 274
[41] Wu J.Densification behavior of Ti-5Al-2.5Sn ELI pre-alloyed powders under hot isostatic pressing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(邬军. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[42] Li S Q.The preparation and microstructure research of rapidly solidified powder metallurgy Ti-60 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2010(李少强. 快速凝固粉末冶金Ti-60钛合金的制备及显微组织研究 [D]. 沈阳: 中国科学院金属研究所, 2010)
[43] Wang G.An investigation of the fabrication and high temperature deformation behavior of P/M TiAl alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(王刚. 粉末冶金TiAl合金制备及高温变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[44] Wu J.Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys [D]. Beijing: University of Chinese Academy of Sciences, 2016(吴杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016)
[45] Guo R P.Mechanical properties of powder metallurgy titanium alloys and densification of titanium powders during HIPing [D]. Shenyang: Northeastern University, 2014(郭瑞鹏. 粉末冶金钛合金力学性能与热等静压致密化研究 [D]. 沈阳: 东北大学, 2014)
[46] Cheng W X.Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013(程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[47] Guo R P.Hot isostatic pressing of titanium alloys powders [D]. Shenyang: Northeastern University, 2018(郭瑞鹏. 钛合金粉末热等静压成型工艺研究 [D]. 沈阳: 东北大学, 2018)
[48] Cai C, Song B, Xue P J, et al.Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties[J]. J. Alloys Compd., 2016, 686: 55
[49] Yuri T, Ono Y, Ogata T.Effects of surface roughness and notch on fatigue properties for Ti-5Al-2.5Sn ELI alloy at cryogenic temperatures[J]. Sci. Technol. Adv. Mater., 2003, 4: 291
[50] Guo R P, Xu L, Cheng W X, et al.Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy[J]. Acta Metall. Sin., 2016, 52: 842(郭瑞鹏, 徐磊, 程文祥等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响[J]. 金属学报, 2016, 52: 842)
[51] Guo R P, Zhang J, Xu L, et al.Mechanical properties of Ti-5Al-2.5Sn ELI powder compacts[J]. Chin. J. Mater. Res., 2018, 32: 333(郭瑞鹏, 张静, 徐磊等. Ti-5Al-2.5Sn ELI粉末合金的力学性能[J]. 材料研究学报, 2018, 32: 333)
[52] Wang G, Zheng Z, Chang L T, et al.Characterization of TiAl pre-alloyed powder and its densification microstructure[J]. Acta Metall. Sin., 2011, 47: 1263(王刚, 郑卓, 常立涛等. TiAl预合金粉末的表征和后续致密化显微组织特点[J]. 金属学报, 2011, 47: 1263)
[53] Li S Q, Chen Z Y, Wang Z H, et al.The densification of rapid solidification high temperature titanium alloy powder by hot isostatic pressing[J]. Chin. J. Mater. Res., 2013, 27: 97(李少强, 陈志勇, 王志宏等. 一种快速凝固高温钛合金粉末的热等静压成形致密化过程及其机制研究[J]. 材料研究学报, 2013, 27: 97)
[54] Guo R P, Xu L, Wu J, et al.Preparation and welding performance of Ti-6Al-4V powder compact prepared by hot isostatic pressing[J]. Mater. Sci. Forum, 2016, 849: 760
[55] Wu J, Xu L, Lu Z G, et al.Preparation of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys and electron beam welding[J]. Acta Metall. Sin., 2016, 52: 1070(吴杰, 徐磊, 卢正冠等. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接[J]. 金属学报, 2016, 52: 1070)
[56] Cheng W X, Xu L, Lei J F, et al.Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder[J]. Chin. J. Nonferrous Met., 2013, 23: 362(程文祥, 徐磊, 雷家峰等. 粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响[J]. 中国有色金属学报, 2013, 23: 362)
[57] van Nguyen C, Bezold A, Broeckmann C. Anisotropic shrinkage during hip of encapsulated powder[J]. J. Mater. Process. Technol., 2015, 226: 134
[58] Xu L, Guo R P, Lei J F, et al.Densification process and properties of powder metallurgy Ti-5Al-2.5Sn alloy[J]. Appl. Mech. Mater., 2014, 552: 278
[59] Wang Q J, Liu J R, Yang R.High temperature titanium alloys: Status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1(王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1)
[60] Xu L, Guo R P, Liu Y Y.Cost analysis of titanium alloy parts through near-net-shape hot-isostatic-pressing technology[J]. Titanium Ind. Prog., 2014, 31(6): 1(徐磊, 郭瑞鹏, 刘羽寅. 钛合金粉末热等静压近净成形成本分析[J]. 钛工业进展, 2014, 31(6): 1)
[61] Chang L T, Sun W R, Cui Y Y, et al.Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
[62] Li W B, Easterling K E.Cause and effect of non-uniform densification during hot isostatic pressing[J]. Powder Metall., 1992, 35: 47
[63] Xu L, Guo R P, Chen Z Y, et al.Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys[J]. Chin. J. Mater. Res., 2016, 30: 23(徐磊, 郭瑞鹏, 陈志勇等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型[J]. 材料研究学报, 2016, 30: 23)
[64] Chang L T, Sun W R, Cui Y Y, et al.Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries[J]. Mater. Sci. Eng., 2017, A682: 341
[65] Wu J, Guo R P, Xu L, et al.Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2017, 33: 172
[66] Kim Y W, Kim S L.Advances in Gammalloy materials-processes-application technology: Successes, dilemmas, and future[J]. JOM, 2018, 70: 553
[67] Lasalmonie A.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J]. Intermetallics, 2006, 14: 1123
[68] Wu X H.Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14: 1114
[69] Clemens H, Mayer S.Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Adv. Eng. Mater., 2013, 15: 191
[70] Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim:Wiley-VCH, 2011: Chapter 3: 25
[71] Zhang J, Jing Y J, Fu M J, et al.Microstructure optimization of ingot metallurgy TiAl[J]. Intermetallics, 2012, 27: 21
[72] Paul J D H, Lorenz U, Oehring M, et al. Up-scaling the size of TiAl components made via ingot metallurgy[J]. Intermetallics, 2013, 32: 318
[73] Chen G L, Xu X J, Teng Z K, et al.Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale[J]. Intermetallics, 2007, 15: 625
[74] Wang S R, Guo P Q, Yang L Y.Centrifugal precision cast TiAl turbocharger wheel using ceramic mold[J]. J. Mater. Process. Technol., 2008, 204: 492
[75] Wu J, Xu L, Guo R P, et al.Preparation of γ-TiAl alloy from powder metallurgy route and analysis of the influence factors of mechanical properties[J]. Chin. J. Mater. Res., 2015, 29: 127(吴杰, 徐磊, 郭瑞鹏等. 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素[J]. 材料研究学报, 2015, 29: 127)
[76] Banerjee D, Gogia A K, Nandi T K, et al.A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Metall., 1988, 36: 871
[77] Germann L, Banerjee D, Guédou J Y, et al.Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide[J]. Intermetallics, 2005, 13: 920
[78] Chen W, Li J W, Xu L, et al.Development of Ti2AlNb alloys: Opportunities and challenges[J]. Adv. Mater. Process., 2014, 172: 23
[79] Shen J, Feng A H.Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys[J]. Acta Metall. Sin., 2013, 49: 1286(沈军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49: 1286)
[80] Banerjee D.The intermetallic Ti2AlNb[J]. Prog. Mater. Sci., 1997, 42: 135
[81] Boehlert C J.The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. J. Phase Equilib., 1999, 20: 101
[82] Emura S, Araoka A, Hagiwara M.B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy[J]. Scr. Mater., 2003, 48: 629
[83] Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492
[84] Cowen C J, Boehlert C J.Comparison of the microstructure, tensile, and creep behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct)[J]. Metall. Mater. Trans., 2007, 38A: 26
[85] Boehlert C J, Majumdar B S, Seetharaman V, et al.Part I. The microstructural evolution in Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 1999, 30A: 2305
[86] Boehlert C J, Miracle D B. Part II.The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 1999, 30A: 2349
[87] Boehlert C J. Part III.The tensile behavior of Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 2001, 32A: 1977
[88] Lu Z G, Wu J, Guo R P, et al.Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 621
[89] Niu H Z, Chen Y F, Zhang D L, et al.Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization[J]. Mater. Des., 2016, 89: 823
[90] Wang Y.The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012(王永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[91] Lu Z G, Wu J, Xu L, et al.Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy[J]. Chin. J. Mater. Res., 2015, 29: 445(卢正冠, 吴杰, 徐磊等. 粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究[J]. 材料研究学报, 2015, 29: 445)
[92] Wu J, Xu L, Lu Z G, et al.Microstructure design and heat response of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2015, 31: 1251
[93] Wu J, Xu L, Lu B, et al.Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime[J]. Chin. J. Mater. Res., 2014, 28: 387(吴杰, 徐磊, 卢斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命[J]. 材料研究学报, 2014, 28: 387)
[94] Wu J, Xu L, Guo R P, et al.Microstructure and mechanical properties of powder metallurgy Ti-22Al-24Nb-0.5Mo (at.%) alloys[J]. Mater. Res. Innov., 2015, 19: S9-46
[95] Wu J, Xu L, Guo R P, et al.Microstructure and mechanical properties of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys joints with electron beam welding[J]. Mater. Sci. Forum, 2016, 849: 321
[96] Qiu C L.Net-shape hot isostatic pressing of a nickel-based powder superalloy [D]. Birmingham: University of Birmingham, 2010
[97] Olevsky E, Maximenko A, van Dyck S, et al. Container influence on shrinkage under hot isostatic pressing—I. Shrinkage anisotropy of a cylindrical specimen[J]. Int. J. Solids Struct., 1998, 35: 2283
[98] Wu J, Xu L, Lu Z G, et al.Effect of container on the microstructure and properties of powder metallurgy TiAl alloys[J]. Mater. Sci. Forum, 2015, 817: 604
[99] Lang L H, Wang G, Huang X N, et al.Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing[J]. Chin. J. Nonferrous Met., 2016, 26: 261(郎利辉, 王刚, 黄西娜等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响[J]. 中国有色金属学报, 2016, 26: 261)
[100] Delo D P, Piehler H R.Early stage consolidation mechanisms during hot isostatic pressing of Ti-6Al-4V powder compacts[J]. Acta Mater., 1999, 47: 2841
[101] Cai C, Song B, Xue P J, et al.A novel near α-Ti alloy prepared by hot isostatic pressing: microstructure evolution mechanism and high temperature tensile properties[J]. Mater. Des., 2016, 106: 371
[102] Sanchez L, Ouedraogo E, Dellis C, et al.Influence of container on numerical simulation of hot isostatic pressing: final shape profile comparison[J]. Powder Metall., 2004, 47: 253
[103] Qiu C L, Attallah M M, Wu X H, et al.Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder[J]. Mater. Sci. Eng., 2013, A564: 176
[104] Jiang H, Zhang K, Garcia-Pastor F A, et al. Microstructure and properties of hot isostatically pressed powder and extruded Ti25V15Cr2Al0.2C[J]. Mater. Sci. Technol., 2011, 27: 1241
[105] Essa K, Khan R, Hassanin H, et al.An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1835
[106] Cao L F, Wu X D, Zhu S M, et al.The effect of HIPping pressure on phase transformations in Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng., 2014, A598: 207
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[9] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[10] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[13] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[14] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[15] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.