|
|
深过冷液态金属Cu的热物理性质和原子分布 |
朱姜蕾, 王庆, 王海鹏( ) |
西北工业大学应用物理系 西安 710072 |
|
Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu |
Jianglei ZHU, Qing WANG, Haipeng WANG( ) |
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
Jianglei ZHU,
Qing WANG,
Haipeng WANG.
Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. Acta Metall Sin, 2017, 53(8): 1018-1024.
[1] | Iida T, Guthrie R I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 97, 218(Iida T, Guthrie R I L著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 97, 218) | [2] | Yan E H, Sun L X, Xu F, et al.Prediction of the solidification path of Al-6.32Cu-25.13Mg alloy by a unified microsegregation model coupled with Thermo-Calc[J]. Acta Metall. Sin., 2016, 52: 632(闫二虎, 孙立贤, 徐芬等. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测[J]. 金属学报, 2016, 52: 632) | [3] | Kim T H, Kelton K F.Structural study of supercooled liquid transition metals[J]. J. Chem. Phys., 2007, 126: 054513 | [4] | Wang H P, Yang S J, Hu L, et al.Molecular dynamics prediction and experimental evidence for density of normal and metastable liquid zirconium[J]. Chem. Phys. Lett., 2016, 653: 112 | [5] | Yan J H, Jian Z Y, Zhu M, et al.Solidification characteristics and microstructure of high undercooled Al-70%Si alloy[J]. Acta Metall. Sin., 2016, 52: 931(严军辉, 坚增运, 朱满等. 深过冷Al-70%Si合金的凝固特性与微观组织[J]. 金属学报, 2016, 52: 931) | [6] | Lü P, Wang H P.Direct formation of peritectic phase but no primary phase appearance within Ni83.25Zr16.75peritectic alloy during free fall[J]. Sci. Rep., 2016, 6: 22641 | [7] | Demmel F, Hennet L, Brassamin S, et al.Nickel self-diffusion in a liquid and undercooled NiSi alloy[J]. Phys. Rev., 2016, 94B: 014206 | [8] | Hu L, Li L H, Yang S J, et al.Thermophysical properties and eutectic growth of electrostatically levitated and substantially undercooled liquid Zr91.2Si8.8 alloy[J]. Chem. Phys. Lett., 2015, 621: 91 | [9] | Perepezko J H, Imhoff S D.Crystallization control in highly undercooled liquids and glasses[J]. Int. J. Mater. Res., 2012, 103: 1083 | [10] | Johnson M L, Mauro N A, Vogt A J, et al.Structural evolution and thermophysical properties of ZrxNi100-x, metallic liquids and glasses[J]. J. Non-Cryst. Solids, 2014, 405: 211 | [11] | Ishikawa T, Okada J T, Paradis P F, et al.Thermophysical property measurements of liquid gadolinium by containerless methods[J]. Int. J. Thermophys., 2010, 31: 388 | [12] | Wunderlich R K, Fecht H J, Egry I, et al.Thermophysical properties of a Fe-Cr-Mo alloy in the solid and liquid phase[J]. Steel Res. Int., 2012, 83: 43 | [13] | Cho Y C, Kim B S, Yoo H, et al.Successful melting and density measurements of Cu and Ag single crystals with an electrostatic levitation (ESL) system[J]. CrystEngComm, 2014, 16: 7575 | [14] | Brillo J, Egry I.Density determination of liquid copper, nickel, and their alloys[J]. Int. J. Thermophys., 2003, 24: 1155 | [15] | Meyer A.Self-diffusion in liquid copper as seen by quasielastic neutron scattering[J]. Phys. Rev., 2010, 81B: 012102 | [16] | Yang H, Wang L, Yuan B, et al.Adhesion of an ultrasmall nanoparticle on a bilayer membrane is still size and shape dependent[J]. J. Mater. Sci. Technol., 2015, 31: 660 | [17] | Wu H N, Xu D S, Wang H, et al.Molecular dynamics simulation of tensile deformation and fracture of γ-TiAl with and without surface defects[J]. J. Mater. Sci. Technol., 2016, 32: 1033 | [18] | Chen F F, Zhang H F, Qin F X, et al.Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper[J]. J. Chem. Phys., 2004, 120: 1826 | [19] | Wang H P, Wei B.Thermophysical properties of stable and metastable liquid copper and nickel by molecular dynamics simulation[J]. Appl. Phys., 2009, 95A: 661 | [20] | Han X J, Chen M, Guo Z Y.Thermophysical properties of undercooled liquid Au-Cu alloys from molecular dynamics simulations[J]. J. Phys.: Condens. Matter, 2004, 16: 705 | [21] | Lü Y J, Cheng H, Chen M.A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals[J]. J. Chem. Phys., 2012, 136: 214505 | [22] | Daw M S, Baskes M I.Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Phys. Rev., 1984, 29B: 6443 | [23] | Stott M J, Zaremba E.Quasiatoms: An approach to atoms in nonuniform electronic systems[J]. Phys. Rev., 1980, 22B: 1564 | [24] | N?rskov J, Lang N D.Effective-medium theory of chemical binding: application to chemisorption[J]. Phys. Rev., 1980, 21B: 2131 | [25] | Baskes M I.Modified embedded-atom potentials for cubic materials and impurities[J]. Phys. Rev., 1992, 46B: 2727 | [26] | Baskes M I, Johnson R A.Modified embedded atom potentials for HCP metals[J]. Modell. Simul. Mater. Sci. Eng., 1994, 2: 147 | [27] | Baskes M I.Calculation of the behaviour of Si ad-dimers on Si(001)[J]. Modell. Simul. Mater. Sci. Eng., 1997, 5: 149 | [28] | Mishin Y, Mehl M J, Papaconstantopoulos D A, et al.Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Phys. Rev., 2001, 63B: 224106 | [29] | Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Phys. Rev., 2004, 69B: 144113 | [30] | Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1 | [31] | Nasch P M, Steinemann S G.Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique[J]. Phys. Chem. Liq., 1995, 29: 43 | [32] | Assael M J, Kalyva A E, Antoniadis K D, et al.Reference data for the density and viscosity of liquid copper and liquid tin[J]. J. Phys. Chem. Ref. Data, 2010, 39: 033105 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|