Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 391-396    DOI: 10.3724/SP.J.1037.2010.00605
  论文 本期目录 | 过刊浏览 |
深过冷凝固Co80Pd20合金中的枝晶生长
周圣银, 胡锐, 蒋力, 李金山, 寇宏超, 常辉, 周廉
西北工业大学凝固技术国家重点实验室, 西安 710072
DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY
ZHOU Shengyin, HU Rui, JIANG Li, LI Jinshan, KOU Hongchao, CHANG Hui, ZHOU Lian
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

周圣银 胡锐 蒋力 李金山 寇宏超 常辉 周廉. 深过冷凝固Co80Pd20合金中的枝晶生长[J]. 金属学报, 2011, 47(4): 391-396.
, , , , , , . DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY[J]. Acta Metall Sin, 2011, 47(4): 391-396.

全文: PDF(982 KB)  
摘要: 采用玻璃熔体净化与循环过热相结合的深过冷凝固技术实现了Co80Pd20合金的深过冷, 获得了高达415 K的最大过冷度. 采用OM观察了不同过冷度下凝固合金的微观组织, 分析了枝晶形成的过冷度区间及过冷度对枝晶形貌的影响. 运用BCT模型对深过冷凝固Co80Pd20中的枝晶生长进行了理论分析, 获得了深过冷凝固过程中的枝晶生长速率、枝晶尖端半径、枝晶尖端溶质浓度及枝晶尖端过冷度组成与过冷度之间的关系, 详尽探讨了过冷熔体中的枝晶生长方式. 借助EDS分析近似测定了凝固过程中枝晶尖端液相溶质浓度, 与BCT模型预测结果符合较好, 表明BCT 模型可成功运用于描述Co80Pd20合金中的枝晶生长.
关键词 深过冷快速凝固枝晶生长溶质截留Co80Pd20合金    
Abstract:Much interest has been focused on the dendrite growth of undercooled melts in the theoretical field of solidification research. The BCT model was widely accepted to interpret dendrite growth behavior in rapid solidification process. In present case, substantial undercooling ΔT up to 415 K was achieved for Co80Pd20 melt applying molten glass denucleation combined with cyclic superheating. The dendritic morphology of the experimental alloy was investigated by OM and the solute concentration of appointed micro-area was analyzed by EDS. Based on the BCT dendrite growth model, the theoretical calculation of the related parameters of the dendrite growth process included tip radius R, dendrite growth velocity V, solute concentration in liquid at dendrite tip CL* and undercooling contributions were completed. It can be found that the dendritic morphology was only formed in the undercooling ranges of 0-72 K and 95-142 K. With the initial undercooling increasing, V rises steeply due to the increase of the growth driving force, but R displays a complicated variation attributed to the combine effects of thermal/solute diffusion. EDS analysis reveals that the experimental data of CL* is in accordance with the theoretical predication by BCT model. The results confirmed that the dendrite growth in undercooled Co80Pd20 melts can be interpreted successfully by BCT model.
Key wordsundercooled    rapid solidification    dendrite growth    solute trapping    Co80Pd20 alloy
收稿日期: 2010-11-11     
ZTFLH: 

TG111.4

 
基金资助:

国家重点基础研究发展计划项目2011CB610400, 新世纪优秀人才支持计划项目NCET-07-0690以及高等学校学科创新引智计划项目B08040资助

作者简介: 周圣银, 男, 1979年生, 博士生
[1] Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M. Phys Rev Lett, 2007; 98: 125701

[2] Dragnevski K, Cochrane R F, Mullis A M. Phys Rev Lett, 2002; 89: 215502

[3] Wang H P, Yao W J, Wei B. Appl Phys Lett, 2006; 89: 201905

[4] Laxmanan V. Phys Rev, 1998; 57E: 2004

[5] Bisang U, Bilgram J H. Phys Rev, 1996; 54E: 5309

[6] Zang D Y, Wang H P, Wei B B. Acta Phys Sin, 2007; 56: 4804

(臧渡洋, 王海鹏, 魏炳波. 物理学报, 2007; 56: 4804)

[7] Yao W J, Wei B B. Sci China, 2004; 34E: 1

(姚文静, 魏炳波. 中国科学, 2004; 34E: 1)

[8] Lipton J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[9] Boettinger W J, Coriell S R, Trivedi R. In: Mehrabian R, Parrish P A eds., Proc 4th Conf on Rapid Solidification Processing: Principles and Technologies. Baton Rouge, LA: Claitors Publishing Division, 1987: 13

[10] Galenko P K, Danilov D A. Phys Lett, 1997; 235A: 271

[11] Wang H F, Liu F, Yang G C, Zhou Y H. Acta Mater, 2010; 58: 5402

[12] Herlach D M. Mater Sci Eng, 1994; R12: 177

[13] Holland–Moritz D, Herlach D M, Spaepen F. Superlattice Microst, 2007; 41: 196

[14] Wilde G, G¨orler G P, Willnecker R. Appl Phys Lett, 1996; 69: 2995

[15] Wilde G, G¨orler G P, Willnecker R. Appl Phys Lett, 1996; 69: 2953

[16] Jacobs G, Egry I. Phys Rev, 1999; 59B: 3961

[17] Zhou S Y, Hu R, Li J S, Chang H, Kou H C, Zhou L. Mater Sci Eng, 2010; A528: 973

[18] Zhou S Y, Hu R, Jiang L, Li J S, Kou H C, Chang H, Zhou L. J Mater Sci (submitted)

[19] Li J F, Yang G C, Zhou Y H. Acta Metall Sin, 1998; 34: 113

(李金富, 杨根仓, 周尧和. 金属学报, 1998; 34: 113)

[20] Chen Y Z, Yang G C, Liu F, Liu N, Xie H, Zhou Y H. Acta Metall Sin, 2006; 42: 703

(陈豫增, 杨根仓, 刘峰, 刘宁, 谢 辉, 周尧和. 金属学报, 2006; 42: 703)

[21] Liu N, Yang G C, Liu F, Chen Y Z, Yang C L, Zhou Y H. Acta Metall Sin, 2007; 43: 449

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林, 周尧和. 金属学报, 2007; 43: 449)

[22] Liu F, Guo X F, Yang G C. Mater Res Bull, 2001; 36: 181

[23] Lu S Y, Li J F, Zhou Y H. J Crst Growth, 2007; 309: 103

[24] Zhou J, Xie F Q, Wu X Q, Zhang J. Acta Metall Sin, 2009; 45: 385

(周俊, 谢发勤, 吴向清, 张军. 金属学报, 2009; 45: 385)

[25] Langer J S, Muller–Krumbhaar H. Acta Metall, 1978; 26: 1681

[26] Volkmann T, Wilde G, Willnecker R, Herlach D M. J Appl Phys, 1998; 83: 3028

[27] Galenko P K, Funke O, Wang J, Herlach D M. Mater Sci Eng, 2004; A375–377: 488

[28] Funke O, Phanikumar G, Galenko P K, Chernova L, Reutzel S, Kolbe M, Herlach D M. J Crst Growth, 2006; 297: 211

[29] Aziz M J. J Appl Phys, 1982; 53: 1158

[30] Li J F, Lu Y L, Yang G C, Zhou Y H. Acta Metall Sin, 1998; 34: 586

(李金富, 吕衣礼, 杨根仓, 周尧和. 金属学报, 1998; 34: 586)
[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[3] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[4] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[5] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[6] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[7] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[8] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[9] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[10] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[11] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[12] 赵雷,江鸿翔,AHMAD Tauseef,赵九洲. Cu-Co-Fe合金雾化合金液滴凝固过程研究*[J]. 金属学报, 2015, 51(7): 883-888.
[13] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[14] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.
[15] 张航, 许庆彦, 史振学, 柳百成. DD6高温合金定向凝固枝晶生长的数值模拟研究*[J]. 金属学报, 2014, 50(3): 345-354.