Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 615-626    DOI: 10.11900/0412.1961.2018.00075
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
高梯度定向凝固技术及其在高温合金制备中的应用
刘林(), 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志
西北工业大学凝固技术国家重点实验室 西安 710072
Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing
Lin LIU(), Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU
State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(5357 KB)   HTML
摘要: 

工业燃机用大型复杂定向或单晶叶片制备的需求,对传统的高速凝固(HRS)定向凝固技术提出了挑战,以液态金属冷却法(LMC)为代表的高梯度定向凝固技术迎来了发展机遇。本文总结分析了高梯度定向凝固技术的工作原理、所制备铸件的组织特点、以及其对凝固缺陷、固溶热处理、力学性能的影响。高梯度定向凝固技术提高了铸件内的温度梯度和冷却速率,因而能够显著减小一次及二次枝晶间距、碳化物、共晶和铸态孔洞尺寸,降低了共晶和铸态孔洞的含量;并降低了热处理过程中固溶孔的含量和元素的残余偏析;该技术还有效抑制雀斑缺陷,提高杂晶形成的临界抽拉速率,减小晶粒取向偏离。高梯度定向凝固技术能够显著提高高温合金的持久性能,但对于单晶合金在高温下提高幅度较小,低周与高周疲劳性能均明显提高,且降低了数据分散度,但在氧化条件下改善幅度减小。

关键词 液态金属冷却定向凝固温度梯度高温合金力学性能    
Abstract

Industrial gas turbines (IGTs) are the key equipment to achieving energy strategy, such as energy conservation and clean power generation. When the large and complex IGT blades are fabricated by the conventional Bridgman directional solidification process, the thermal gradients at the solidification front are low and unstable, resulting in some disadvantages: the coarse dendrite structure with severe dendritic segregation, the increased occurrence of casting defects and the poor performance of mechanical properties. These disadvantages provide a good opportunity for rapid development of the directional solidification with high thermal gradient (HG), such as the liquid metal cooling (LMC). In the present work, the physical basis of HG process, the microstructure, mechanical properties, solution heat treatment, and casting defects of the superalloys processed by HG process, have been reviewed. The HG process increases the thermal gradient and the cooling rate, thus permitting microstructural improvements including a more homogeneous fine-dendrite structure with lower elemental segregation and shrinkage porosity, and refinement of carbide, γ′ phase and eutectic, reducing the volume fraction of eutectic and shrinkage porosity. During the solution heat treatment, the HG process increases the incipient melting temperature and reduces the residual segregation as well as the content of solution pore. The HG process could effectively inhibit the formation of freckle chains, increase the critical withdrawal rate of the stray grain formation, and decrease the degree of the misorientation of the <001> grain orientation from the casting axis. Moreover, the HG process could improve the mechanical properties including the stress rupture life, low-cycle fatigue (LCF), high-cycle fatigue properties and short-term strength, but the improvement might be reduced at higher temperature or under the oxidation condition.

Key wordsliquid metal cooling    directional solidification    thermal gradient    superalloy    mechanical property
收稿日期: 2018-02-28     
ZTFLH:  TG21  
基金资助:资助项目 国家自然科学基金项目Nos.51331005、51631008、51690163和51771148,国家重点研发计划项目Nos.2016YFB0701400和2017YFB0702900
作者简介:

作者简介 刘 林,男,1956年生,教授

引用本文:

刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing. Acta Metall Sin, 2018, 54(5): 615-626.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00075      或      https://www.ams.org.cn/CN/Y2018/V54/I5/615

Technology Location PDAS / mm G / (Kcm-1) Cooling media
Shoulder Airfoil
HRS 0.60 0.55 20~40 -
LMC






Germany ENUa 0.30 0.25 50~60 Sn
DPCb 0.38 0.36 40~50 Sn
USA
MUc 0.39 0.28 60~80 Sn
GEd 0.26 0.22 - Sn
GEd - 0.20 40~65 Al
Russia VIAMe - - ~120 Al
China IMRf 0.35 0.30 80~100 Sn
NWPUg 0.26 0.22 170~250 Ga-In-Sn
表1  国内外定向凝固设备特征参量的比较
图1  不同温度梯度(G)和抽拉速率(V)下的枝晶形貌[19,35]
G / (Kcm-1) Al Cr Mo W Ta Re
60 0.7 1.2 1.2 2.1 0.5 3.4
200 0.8 1 0.9 1.5 0.6 2.5
表2  ZhS-47合金(9%Re,质量分数)在不同温度梯度下定向凝固的偏析系数[7]
图2  HRS与LMC工艺下的碳化物形貌[37]
图3  G对铸态孔体积分数(Q)的影响[40]
图4  G对铸态γ′?相尺寸(d)的影响[40]
图5  DD33合金的凝固组织与固溶热处理组织的元素偏析
图6  定向凝固参数和零件尺寸与雀斑形成区域的关系[8]
图7  HRS和LMC制备的涡轮叶片缘板杂晶出现情况的实验和模拟结果[53]
图8  棒状铸件和叶片的取向图[10]
Defect Conventional (HRS) High-gradient (LMC) Location
Freckle chain 4 1 Root
High angle boundary 3 2 Leading-edge platform, trailing edge, root
Recrystallized grain 1 4 Concave platform edge, leading edge
Zebra grain 0 1 Leading-edge platform
表3  Titan 130发动机一级叶片的铸造缺陷[10]
图9  在低梯度(LG)和高梯度(HG)定向凝固Mar-M246合金的蠕变曲线[59,60]
Technology G
Kcm-1
V
mmmin-1
Rupture life
h
Elongation
%
HRS 50 5 69.93 25.0
LMC 218 3 100.90 20.9
LMC 218 7 96.22 29.7
LMC 218 10 91.15 31.2
表4  HRS与LMC工艺条件下DZ125合金的持久寿命[61]
Test condition Rupture life / h
Temperature / ℃ Stress / MPa HG LG
760 750 1138 759
850 500 359 -
900 380 230 212
950 240 386 341
1000 200 177 162
1050 120 1055 -
1050 140 288 255
表5  在LG和HG定向凝固CMSX-2合金的持久寿命[62]
Technology Dendrite arm spacing
μm
Rupture life / h Elongation / %
As cast After heat treatment As cast After heat treatment
HRS 350 39.4 84.0 25.2 22.0
HRS 245 52.6 67.0 31.3 39.0
LMC 123 58.6 64.0 34.7 32.5
LMC 79 64.8 108.8 38.1 24.0
LMC 38 76.4 131.5 34.1 35.1
表6  HRS与LMC工艺条件下的持久寿命[19,35]
图10  HRS与LMC工艺下的蠕变性能[32]
图11  GTD444合金的低周疲劳寿命比较[26]
图12  HRS与LMC工艺在950 ℃时的低周疲劳性能[32]
图13  CMSX-2合金的高周疲劳寿命比较[62]
图14  PWA1483合金的高周疲劳寿命比较[31]
G / (Kcm-1) Short-term strength at 20 ℃ / MPa Rupture life under 1100 ℃ and 120 MPa / h
20 87 57
100 107 118
200 120 139
表7  温度梯度对力学性能的影响[40]
[1] Konter M, Thumann M.Materials and manufacturing of advanced industrial gas turbine components[J]. J. Mater. Proc. Technol., 2001, 117: 386
[2] Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of Nickel-base single crystal superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys[C]. Warrendale, PA: TMS, 2016: 177
[3] Link T, Zabler S, Epishin A, et al.Synchrotron tomography of porosity in single-crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2006, A425: 47
[4] Sato A, Harada H, Yokokawa T, et al.The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scr. Mater., 2006, 54: 1679
[5] Liu L.The progress of investment casting of nickel-based superalloys[J]. Foundry, 2012, 61: 1273(刘林. 高温合金精密铸造技术研究进展[J]. 铸造, 2012, 61: 1273)
[6] Carter P, Cox D C, Gandin C A, et al.Process modelling of grain selection during the solidification of single crystal superalloy castings[J]. Mater. Sci. Eng., 2000, A280: 233
[7] Bondarenko Y A, Kablov E N, Surova V A, et al.Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy[J]. Met. Sci. Heat Treat., 2006, 48: 360
[8] Gigliotti M F X, Huang S C, Klug F J, et al. GE casting project [R]. Niskayuna: General Electric Corporate, 2004
[9] Kermanpur A, Mehrara M, Varahram N, et al.Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process[J]. Mater. Sci. Technol., 2008, 24: 100
[10] Clemens M L, Price A, Bellows R S.Advanced solidification processing of an industrial gas turbine engine component[J]. JOM, 2003, 55(3): 27
[11] Ma D X.Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metall. Sin., 2015, 51: 1179(马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51: 1179)
[12] Hofmeister M, Franke M M, Koerner C, et al.Single crystal casting with fluidized carbon bed cooling: A process innovation for quality improvement and cost reduction[J]. Metall. Mater. Trans., 2017, 48B: 3132
[13] Giamei A F, Tschinkel J G.Liquid metal cooling: A new solidification technique[J]. Metall. Trans., 1976, 7A: 1427
[14] Fitzgerald T J, Singer R F.An analytical model for optimal directional solidification using liquid metal cooling[J]. Metall. Mater. Trans., 1997, 28A: 1377
[15] Elliott A J, Pollock T M, Tin S, et al.Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221
[16] Wang F, Ma D X, Bogner S, et al.Comparative investigation of the downward and upward directionally solidified single-crystal blades of superalloy CMSX-4[J]. Metall. Mater. Trans., 2016, 47A: 2376
[17] Wang F, Ma D X, Zhang J, et al.Effect of local cooling rates on the microstructures of single crystal CMSX-6 superalloy: A comparative assessment of the Bridgman and the downward directional solidification processes[J]. J. Alloys Compd., 2014, 616: 102
[18] Wang F, Ma D X, Zhang J, et al.Microstructural evolution of aluminium-copper alloys during the downward directional solidification process[J]. Int. J. Mater. Res., 2014, 105: 168
[19] Liu L, Huang T W, Qu M, et al.High thermal gradient directional solidification and its application in the processing of nickel-based superalloys[J]. J. Mater. Proc. Technol., 2010, 210: 159
[20] Lohmuller A, Eber W, Grobmann J, et al.Improved quality and economics of investment castings by liquid metal cooling: The selection of cooling media [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 181
[21] Huang T W, Liu L, Zhang W G, et al.A compound induction heating device in the directional solidification apparatus with the high thermal gradient [P]. Chin Pat, 200710017592.8, 2007(黄太文, 刘林, 张卫国等. 一种高温度梯度定向凝固的复合感应加热装置[P]. 中国专利, 200710017592.8, 2007)
[22] Zhang W G, Huang T W, Liu L, et al.A conical graphite induction heater in the directional solidification apparatus with the high thermal gradient [P]. Chin Pat, 200810017988.7, 2008(张卫国, 黄太文, 刘林等. 高温度梯度定向凝固锥形石墨感应加热器 [P]. 中国专利, 200810017988.7, 2008)
[23] Zhang J, Liu L, Fu H Z, et al.A zone intensified overheating by resistance heater in the directional solidification apparatus [P]. Chin Pat, 201010142263.8, 2010(张军, 刘林, 傅恒志等. 一种局部强化电阻加热高梯度定向凝固装置 [P]. 中国专利, 201010142263.8, 2010)
[24] Liu L, Ge B M, Zhang J, et al. A composite insulation baffle utilized in the directional solidification apparatus [P]. Chin Pat, 201110087122.5, 2011(刘林, 葛丙明, 张军等.一种定向凝固用复合隔热挡板 [P]. 中国专利, 201110087122.5, 2011)
[25] Hunt J D.Cellular and primary dendrite spacings [A]. International Conference on Solidification and Casting of Metals[C]. London: The Metal Society, 1979: 3
[26] Balsone S, Feng G F, Peterson L, et al.Microstructure and mechanical behavior of liquid metal cooled directionally solidified GTD-444 [A]. Solidification Processes and Microstructures—A Symposium in Honor of Wilfried Kurz[C]. Charlotte: TMS, 2004: 77
[27] Brundidge C L, Van Drasek D, Wang B, et al.Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys[J]. Metall. Mater. Trans., 2012, 43A: 965
[28] Brundidge C L, Miller J D, Pollock T M.Development of dendritic structure in the liquid-metal-cooled, directional-solidification process[J]. Metall. Mater. Trans., 2011, 42A: 2723
[29] Elliott A J, Karney G B, Gigliotti M F X, et al. Issues in processing by the liquid-Sn assisted directional solidification technique [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 421
[30] Franke M M, Hilbinger R M, Lohmüller A, et al.The effect of liquid metal cooling on thermal gradients in directional solidification of superalloys: Thermal analysis[J]. J. Mater. Process. Technol., 2013, 213: 2081
[31] Lamm M, Singer R F.The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metall. Mater. Trans., 2007, 38A: 1177
[32] Steuer S, Villechaise P, Pollock T M, et al.Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy[J]. Mater. Sci. Eng., 2015, A645: 109
[33] Bondarenko Y A, Kablov E N.Directional crystallization of high-temperature alloys with elevated temperature gradient[J]. Met. Sci. Heat Treat., 2002, 44: 288
[34] Bondarenko Y A, Kablov E N, Morozova G I.Effect of high-gradient directed crystallization on the structure and phase composition of a high-temperature alloy of the type RENE-N5[J]. Met. Sci. Heat Treat., 1999, 41: 61
[35] Liu L, Huang T W, Zhang J, et al.Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Mater. Lett., 2007, 61: 227
[36] Liu C, Li K W, Shen J, et al.Improved castability of directionally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metall. Mater. Trans., 2012, 43A: 405
[37] Fan Z D, Wang D, Liu C, et al.Low-cycle fatigue properties of nickel-based superalloys processed by high-gradient directional solidification[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 878
[38] Kuleshova E A, Cherkasova E R, Logunov A V.Dendritic segregation in heat-resistant nickel alloys[J]. Met. Sci. Heat Treat., 1981, 23: 392
[39] Zhao K, Ma Y H, Lou L H.Improvement of creep rupture strength of a liquid metal cooling directionally solidified nickel-base superalloy by carbides[J]. J. Alloys Compd., 2009, 475: 648
[40] Bondarenko Y A, Echin A B, Surova V A, et al.Special features of the structure of single-crystal refractory nickel alloy under directed crystallization[J]. Met. Sci. Heat Treat., 2017, 59: 39
[41] Zhang W G, Liu L, Huang T W, et al.Effect of cooling rate on γ' precipitate of DZ4125 alloy under high thermal gradient directional solidification[J]. Acta Metall. Sin., 2009, 45: 592(张卫国, 刘林, 黄太文等. 高温度梯度定向凝固冷却速率对DZ4125合金γ'相的影响[J]. 金属学报, 2009, 45: 592)
[42] Liu G, Liu L, Zhao X B, et al.Microstructure and microsegregation in a Ni-based single crystal superalloy directionally solidified under high thermal gradient[J]. Acta Metall. Sin., 2010, 46: 77(刘刚, 刘林, 赵新宝等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46: 77)
[43] Zhao X B, Liu L, Yu Z, Zhang W H, et al.Influence of directional solidification variables on the microstructure and crystal orientation of AM3 under high thermal gradient[J]. J. Mater. Sci., 2010, 45: 6101
[44] Kurz W, Fisher D J.Fundamental of Solidification[M]. 4th Ed., Switzerland: Trans Tech Publications Ltd, 1998: 19
[45] Miller J D, Pollock T M.Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field[J]. Acta Mater., 2014, 78: 23
[46] Pollock T M, Murphy W H.The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metall. Mater. Trans., 1996, 27A: 1081
[47] Schneider M C, Gu J P, Beckermann C, et al.Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification[J], Metall. Mater. Trans., 1997, 28A: 1517
[48] Meng X B, Li J G, Chen Z Q, et al.Effect of Platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955
[49] Ma D X, Bührig-Polaczek A.Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall. Mater. Trans., 2009, 40B: 738
[50] Siredey N, Boufoussi M, Denis S, et al.Dendritic growth and crystalline quality of nickel-base single grains[J]. J. Cryst. Growth, 1993, 130: 132
[51] Bogdanowicz W, Albrecht R, Sieniawski J, et al.The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418
[52] Stanford N, Djakovic A, Shollock B A, et al.Seeding of single crystal superalloys-role of seed melt-back on casting defects[J]. Scr. Mater., 2004, 50: 159
[53] Li Y F, Liu L, Huang T W, et al.Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques[J]. China Foundry, 2017, 14(2): 75
[54] D'Souza N, Ardakani M G, mclean M, et al. Directional and single-crystal solidification of Ni-base superalloys: Part I. The role of curved isotherms on grain selection[J]. Metall. Mater. Trans., 2000, 31A: 2877
[55] Kermanpur A, Rappaz M, Varahram N, et al.Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process[J]. Metall. Mater. Trans., 2000, 31B: 1293
[56] Price A R, Clemens M L.Improved casting process for large single crystal gas turbine components [A]. Advanced Materials and Processes for Gas Turbines[C]. Warrendale, PA: TMS, 2003: 119
[57] Liu C B, Shen J, Zhang J, et al.Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC[J]. J. Mater. Sci. Technol., 2010, 26: 306
[58] Zhang J, Lou L H.Directional solidification assisted by liquid metal cooling[J]. J. Mater. Sci. Technol., 2007, 23: 289
[59] McLean M. Investment casting-developments in microstructural control and mechanical performance[J]. Mater. Sci. Technol., 1988, 4: 205
[60] Quested P N, mclean M. Solidification morphologies in directionally solidified Superalloys[J]. Mater. Sci. Eng., 1984, A65: 171
[61] Zhang H, Pei Y, Li S, et al.Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC[J]. Mater. Res. Innov., 2014, 18(suppl.4): S4-385
[62] Khan T, Caron P.Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2[J]. Mater. Sci. Technol., 1986, 2: 486
[63] Brundidge C L, Pollock T M.Processing to fatigue properties: Benefits of high gradient casting for single crystal airfoils [A]. Superalloys 2012: 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 379
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.