Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 391-398    DOI: 10.3724/SP.J.1037.2012.00683
  论文 本期目录 | 过刊浏览 |
Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向
刘庆华1,黄裕金1,刘剑2,胡侨丹1,李建国1
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 中国科学院宁波材料技术与工程研究所, 宁波315201
MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS
LIU Qinghua 1, HUANG Yujin 1, LIU Jian 2, HU Qiaodan 1, LI Jianguo 1
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
全文: PDF(2807 KB)  
摘要: 

采用区域熔炼液态金属冷却定向凝固法制备具有择优取向的 Ni52Fe17Ga27Co4磁性形状记忆合金,借助OM, SEM和EBSD研究了稳定生长区的组织特征和择优取向. 结果表明, 在低温度梯度和高凝固速率下, 晶体沿<100>方向生长, 但生长不稳定, 存在初生γ; 当提高温度梯度和降低凝固速率后, 晶体沿<110>方向生长, 柱状晶大小均匀, 无γ, 室温时为沿 (222) 面取向的马氏体单相组织. 马氏体孪晶孪生面为 (110)和(110), 内部无微孪晶; 在马氏体组织中, 观察到了条状分布的磁畴.理论分析结果表明, 晶体稳定生长的条件为高的温度梯度和低的凝固速率. 在该条件下获得了大体积稳定马氏体单变体区.

关键词 Ni-Fe-Ga-Co磁性形状记忆合金定向凝固区域熔炼液态金属冷却法择优取向马氏体单变体区    
Abstract

Ni-Fe-Ga-Co is a new ferromagnetic shape memory alloy system, which is promising for magnetically controlled actuators and refrigerators. In order to improve its performance, single crystal or polycrystals with preferred orientation are required. To prepare these crystals, directional solidification is the most effective way. In this work, directionally solidified Ni52Fe17Ga27Co4 ferromagnetic shape memory alloys were prepared by zone melting liquid metal cooling (ZMLMC) method. The preferred crystal orientation and microstructure in the steady growth zone under three different conditions were studied. It is indicated that under low temperature gradient and high growth velocity, the solidified crystals grew along <100> direction and primary γ phase was formed during the unstable growth; under high temperature gradient and low growth velocities, the coarse columnar crystals had uniform sizes, single martensitic phase and well-developed preferred orientation, i.e. along (222) planes of the martensite. It is deduced that the condition for stable crystal growth is high temperature gradient and low growth velocity. Under this condition, giant martensitic single-variant sets in the oriented columnar crystals were revealed, which is meaningful for potential large magnetic field-induced strain. EBSD results revealed that there was no micro-twin inside the martensitic twins and the twinning plane turned out to be (110) and (110). Additionally, magnetic domains intersecting with martensitic lamellae were observed.

Key wordsNi-Fe-Ga-Co    ferromagnetic shape memory alloy    directional solidification    zone melting liquid metal cooling    preferred orientation    single-variant set
收稿日期: 2012-11-14     
基金资助:

国家自然科学基金项目 51010425 和 51027005资助

通讯作者: 李建国     E-mail: lijg@sjtu.edu.cn
作者简介: 刘庆华, 男, 1987年生, 硕士生

引用本文:

刘庆华,黄裕金,刘剑,胡侨丹,李建国. Ni-Fe-Ga-Co磁性形状记忆合金定向凝固稳定生长区的组织及择优取向[J]. 金属学报, 2013, 29(4): 391-398.
LIU Qinghua, HUANG Yujin, LIU Jian, HU Qiaodan, LI Jianguo. MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS. Acta Metall Sin, 2013, 29(4): 391-398.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00683      或      https://www.ams.org.cn/CN/Y2013/V29/I4/391

[1] O'Handley R C.  J Appl Phys, 1998; 83: 3263


[2] Planes A, Manosa L, Acet M.  J Phys: Condens Matter, 2009; 21: 233201

[3] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O.  Nat Mater, 2012; 11: 620

[4] Pecharsky V K, Gschneidner Jr K A.  J Magn Magn Mater, 1999; 200: 44

[5] Bonnot E, Romero R, Manosa L, Vives E, Planes A.  Phys Rev Lett, 2008; 100: 125901

[6] Ullakko K.  J Mater Eng Perform, 1996; 5: 405

[7] Sozinov A, Likhachev A A, Lanska N, Ullakko K.  Appl Phys Lett, 2002; 80: 1746

[8] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A.  Nat Mater, 2005; 4: 450

[9] Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K, Oikawa K.  Appl Phys Lett, 2003; 83: 4993

[10] Liu J, Xie H, Li J G.  J Cryst Growth, 2007; 300: 272

[11] Li J Z, Huang B, Li J G.  J Cryst Growth, 2011; 317: 110

[12] Liu J, Zheng H X, Huang Y L, Xia M X, Li J G.  Scr Mater, 2005; 53: 29

[13] Liu J, Scheerbaum N, Hinz D, Gutfleisch O.  Acta Mater, 2008; 56: 3177

[14] Morito H, Fujita A, Oikawa K, Fukamichi K, Kainuma R, Kanomata T, Ishida K.  J Phys: Condens Matter, 2009; 21: 076001

[15] Imano Y, Omori T, Oikawa K, Sutou Y, Kainuma R, Ishida K.  Mater Sci Eng, 2006; A438-440: 970

[16] Liu J, Scheerbaum N, Hinz D, Gutfleisch O.  Scr Mater, 2008; 59: 1063

[17] Chang C E, Wilcox W R.  J Cryst Growth, 1974; 21: 135

[18] Bleay J, Hooper R M, Narang R S, Sherwood J N.  J Cryst Growth, 1978; 43: 589

[19] Souptel D, Loser W, Behr G.  J Cryst Growth, 2007; 300: 538

[20] Jiang C B, Liu J H, Wang J M, Xu L H, Xu H B.  Acta Mater, 2005; 53: 1111

[21] Liang T, Jiang C B, Xu H B, Liu Z H, Zhang M, Cui Y T, Wu G H.  J Magn Magn Mater, 2004; 268: 29

[22] Masdeu F, Pons J, Santamarta R, Cesari E, Dutkiewicz J.  Mater Sci Eng, 2008; A481-482: 101

[23] Morito H, Fujita A, Oikawa K, Ishida K, Fukamichi K, Kainuma R.  Appl Phys Lett, 2007; 90: 062505

[24] Zheng H X, Xue S C, Wu D Z, Zhai Q J.  J Alloys Compd, 2011; 509: 8333

[25] Xie H, Liu J, Huo Y Q, Li J G.  Acta Metall Sin, 2007; 43: 417

(谢华, 刘剑, 霍颜秋, 李建国. 金属学报, 2007; 43: 417)

[26] Brown P J, Gandy A P, Ishida K, Kainuma R, Kanomata T, Morito H, Neumann K U, Oikawa K, Ziebeck K R A. J Phys: Condens Matter, 2007; 19: 016201

[27] Pons J, Chernenko V A, Santamarta R, Cesari E.  Acta Mater, 2000; 48: 3027

[28] Hu H Q.  Theory of Metal Solidification. Beijing: China Machine Press, 2000: 117

(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 117)

[29] Ducher R, Kainuma R, Ishida K.  J Alloys Compd, 2008; 463: 213

[30] Ge Y.  PhD Dissertation, Helsinki University of Technology, 2007

[31] Acet M.  Nat Mater, 2009; 8: 854

[32] Chulist R, Skrotzki W, Oertel C G, Bohm A, Potschke M.  Scr Mater, 2010; 63: 548

[33] Ge Y, Jiang H, Sozinov A, Soderberg O, Lanska N, Keranen J, Kauppinen E I,Lindroos V K, Hannula S -P.  Mater Sci Eng, 2006; A438-440: 961
[1] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[2] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[3] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[6] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[7] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[8] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[9] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[10] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[13] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[14] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[15] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.