Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 513-523    DOI: 10.11900/0412.1961.2016.00576
  论文 本期目录 | 过刊浏览 |
中国低活化马氏体钢在液态Pb-Bi中的脆化现象
杨旭1,2,廖波1,刘坚2,严伟2,单以银2,肖福仁1,杨柯2()
1 燕山大学材料科学与工程学院 秦皇岛066004
2 中国科学院金属研究所 沈阳110016
Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi
Xu YANG1,2,Bo LIAO1,Jian LIU2,Wei YAN2,Yiyin SHAN2,Furen XIAO1,Ke YANG2()
1 College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016,China
引用本文:

杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. Acta Metall Sin, 2017, 53(5): 513-523.

全文: PDF(16832 KB)   HTML
摘要: 

为了评价反应堆候选结构材料与液态金属的相容性,针对低活化马氏体钢在液态Pb-Bi共晶中的拉伸脆化现象,采用2种拉伸速率的拉伸实验,研究了中国低活化马氏体钢(CLAM)在200~500 ℃范围内的Ar气和液态Pb-Bi共晶环境中的拉伸断裂行为。结果表明,在Ar气环境中拉伸时,CLAM钢均为韧性断裂;而在液态Pb-Bi共晶环境中拉伸时,在300~450 ℃下会出现脆性断裂现象。在300~450 ℃脆化温度区间内试样强度变化不大,但总延伸率显著降低,出现“韧谷”现象。然而拉伸温度在低于或高于脆化温度区间时,脆断现象消失,总延伸率回复到与对比试样相同水平。在更低的拉伸速率下,CLAM钢发生“韧谷”现象的温度区间明显扩大,表明拉伸速率对CLAM钢在液态Pb-Bi共晶中的脆化也有影响。经低温回火硬化后,CLAM钢在液态Pb-Bi共晶中出现拉伸脆化现象是由于液态Pb-Bi接触裂纹尖端后造成表面能降低,进而降低临界解理应力而发生脆性断裂。

关键词 CLAM钢液态金属脆化Pb-Bi共晶温度应变速率    
Abstract

China low activation martensitic (CLAM) steel has been considered as the primary candidate structural material for application in fusion systems because of its good thermal conductivity and low thermal expansion ratio. In this work, the tensile behavior of the CLAM steel in liquid lead-bismuth eutectic was investigated to assess the compatibility of CLAM steel with liquid metal. The CLAM steel was tempered before test. The tensile tests were performed in liquid lead-bismuth eutectic and argon gas respectively at different temperatures ranging from 200 ℃ to 500 ℃ under different strain rates. All the specimens ruptured in ductile manner in argon gas environment, exhibiting obvious necking and dimples on the fracture surface. For those tested in liquid lead-bismuth eutectic, the specimens behaved ductile fracture when the test temperature was below 250 ℃, but fractured in brittle cleavage manner in the temperature range of 300~450 ℃. The embrittlement mainly occurred after necking, showing typical river pattern on the fracture surface with slight necking trace, and obvious cracking points were observed to initiate at the fracture edge and propagated towards the center of the specimen, namely, the appearance of the ductility trough that shows significant degradation in total elongation while no noticeable differences in strength compared with the tested specimens in argon gas environment. Furthermore, the brittle fracture disappeared and total elongation recovered when the tensile tests were performed out of the embrittlement temperature range. In slower strain rate tensile (SSRT) tests, the temperature range of the ductility trough greatly expanded and brittle fracture occurred at temperatures below 250 ℃. The results indicate that CLAM steel is susceptible to embrittlement in liquid lead-bismuth eutectic. This is because the contact of the liquid metal with the cracking tip leads to a decrease of the interfacial energy, which further reduces the critical cleavage stress and facilitates the brittle fracture. Both temperature and strain rate are evidenced in this work to have an effect on the embrittlement of CLAM steel.

Key wordsCLAM steel    liquid metal embrittlement    Pb-Bi eutectic    temperature    strain rate
收稿日期: 2016-12-27     
图1  静态液态金属拉伸实验夹具示意图
图2  中国低活化马氏体(CLAM)钢在250~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.15 mm/min时的拉伸曲线
图3  CLAM钢在200~500 ℃、Ar气和Pb-Bi共晶中拉伸速率为0.015 mm/min时的拉伸曲线
图4  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的强度变化
图5  不同拉伸速率下CLAM钢在Ar气和液态Pb-Bi共晶环境中的总延伸率变化
图 6  CLAM钢在250~500 ℃、Ar气中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图7  CLAM钢在250~500 ℃液态Pb-Bi中拉伸速率为0.15 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图8  CLAM钢在200~500 ℃、Ar气中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
图9  CLAM钢在200~500 ℃液态Pb-Bi中拉伸速率为0.015 mm/min时拉伸断口的宏观和微观断口形貌的SEM像
[1] Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion. Eng. Des., 2012, 87: 1628
[2] Kurtz R J, Alamo A, Lucon E, et al. Recent progress toward deve-lopment of reduced activation ferritic/martensitic steels for fusion structural applications [J]. J. Nucl. Mater., 2009, 386-388: 411
[3] Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion. Eng. Des., 2002, 61-62: 13
[4] Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518
[5] Chen X Z, Yuan Q B, Madigan B, et al.Long-term corrosion behavior of martensitic steel welds in static molten Pb-17Li alloy at 550 ℃[J]. Corros. Sci., 2015, 96: 178
[6] Konys J, Krauss W, Voss Z, et al. Corrosion behavior of EUROFER steel in flowing eutectic Pb-17Li alloy [J]. J. Nucl. Mater., 2004, 329-333: 1379
[7] Dai Y, Long B, Groeschel F.Slow strain rate tensile tests on T91 in static lead-bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 222
[8] Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels[J]. J. Nucl. Mater., 2012, 429: 105
[9] Hamouche-Hadjem Z, Auger T, Guillot I, et al.Susceptibility to LME of 316L and T91 steels by LBE: Effect of strain rate[J]. J. Nucl. Mater., 2008, 376: 317
[10] Van den Bosch J, Sapundjiev D, Almazouzi A. Effects of temperature and strain rate on the mechanical properties of T91 material tested in liquid lead bismuth eutectic[J]. J. Nucl. Mater., 2006, 356: 237
[11] Long B, Tong Z, Gröschel F, et al.Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments[J]. J. Nucl. Mater., 2008, 377: 219
[12] Liu J, Huang Q Y, Jiang Z Z, et al.Effect of strain rate on the mechanical properties of CLAM steel in liquid PbLi eutectic[J]. Fusion. Eng. Des., 2013, 88: 2603
[13] Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic-martensitic steel in liquid lead alloys[J]. J. Nucl. Mater., 2008, 376: 322
[14] Legris A, Nicaise G, Vogt J B, et al.Embrittlement of a martensitic steel by liquid lead[J]. Scr. Mater., 2000, 43: 997
[15] Nicaise G, Legris A, Vogt J B, et al.Embrittlement of the martensitic steel 91 tested in liquid lead[J]. J. Nucl. Mater., 2001, 296: 256
[16] Dai Y, Long B, Jia X, et al.Tensile tests and TEM investigations on LiSoR-2 to -4[J]. J. Nucl. Mater., 2006, 356: 256
[17] Dai Y, Wagner W.Materials researches at the Paul Scherrer Institute for developing high power spallation targets[J]. J. Nucl. Mater., 2009, 389: 288
[18] Van den Bosch J, Coen G, Bosch R W, et al. TWIN ASTIR: First tensile results of T91 and 316L steel after neutron irradiation in contact with liquid lead-bismuth eutectic[J]. J. Nucl. Mater., 2010, 398: 68
[19] Long B, Dai Y, Baluc N.Investigation of liquid LBE embrittlement effects on irradiated ferritic/martensitic steels by slow-strain-rate tensile tests[J]. J. Nucl. Mater., 2012, 431: 85
[20] Joseph B, Picat M, Barbier F.Liquid metal embrittlement: A state-of-the-art appraisal[J]. Eur. Phys. J. Appl. Phys., 1999, 5: 19
[21] Shchukin E D.Physical-chemical mechanics in the studies of Peter A. Rehbinder and his school[J]. Colloids. Surf., 1999, 149A: 529
[22] Stoloff N S, Johnston T L.Crack propagation in a liquid metal environment[J]. Acta Metall., 1963, 11: 251
[23] Ye C Q, Vogt J B, Serre I P.Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal[J]. Mater. Sci. Eng., 2014, A608: 242
[24] Hémery S, Auger T, Courouau J L, et al.Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel[J]. Corros. Sci., 2013, 76: 441
[25] Martı?n F J, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature[J]. J. Nucl. Mater., 2004, 335: 194
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[8] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[9] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[10] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[11] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[12] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[13] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[14] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[15] 刘正东,陈正宗,何西扣,包汉生. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548.