Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 369-375    DOI: 10.11900/0412.1961.2016.00281
  本期目录 | 过刊浏览 |
高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联
耿遥祥1(),张志杰1,王英敏2,羌建兵2,董闯2,汪海斌1,特古斯3
1 江苏科技大学材料科学与工程学院 镇江 212003
2 大连理工大学三束材料改性教育部重点实验室 大连 116024
3 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室 呼和浩特 010022
Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys
Yaoxiang GENG1(),Zhijie ZHANG1,Yingmin WANG2,Jianbing QIANG2,Chuang DONG2,Haibin WANG1,Ojied TEGUS3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
引用本文:

耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
Yaoxiang GENG, Zhijie ZHANG, Yingmin WANG, Jianbing QIANG, Chuang DONG, Haibin WANG, Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. Acta Metall Sin, 2017, 53(3): 369-375.

全文: PDF(2006 KB)   HTML
摘要: 

以具有最佳非晶形成能力的新型Fe-B-Si-Hf四元块体非晶合金团簇式成分[Si-B2Fe7.7Hf0.3]Fe (Fe72.5B16.7Si8.3Hf2.5)为基础,通过添加Fe原子获得了[Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3,原子个数)系列高Fe含量的Fe-B-Si-Hf四元合金成分。液态急冷、热分析和磁性测量结果表明,随着Fe原子数量的增加,非晶合金的形成能力逐渐降低,形成棒状块体非晶样品的临界尺寸由x=0时的2.5 mm降低到x=2时的1 mm。非晶样品的玻璃态转变温度、晶化温度和Curie温度随Fe原子数量的增加也整体上表现为降低的趋势。该系列非晶样品软磁性能优异,其中[Si-B2Fe7.7Hf0.3]Fe+Fe2 (Fe76.4B14.3Si7.1Hf2.2)块体非晶合金的饱和磁化强度和矫顽力分别为1.58 T和2.8 A/m。为建立高Fe含量Fe-B-Si-Hf非晶合金的结构-性能关联,构建了{[Si-B2Fe7.7Hf0.3]+[Fe-Fe14]x/15}Fe非晶合金的“双团簇”微观结构模型。结果表明,源于α-Fe的[Fe-Fe14]团簇的数量在Fe-B-Si-Hf四元非晶合金的性能变化中起决定作用。

关键词 成分设计Fe-B-Si-Hf块体非晶合金软磁性能“双团簇”模型结构-性能关联    
Abstract

Fe-based amorphous alloys are well known for their good magnetic properties. But these alloys were only prepared into ribbon form in early times due to their insufficient glass-forming abilities (GFAs). After first synthesized of Fe-(Al, Ga)-P-C-B bulk glassy alloy, many Fe-based bulk metallic glasses (BMGs) were synthesized. Compared with amorphous alloy ribbons, the GFA of these alloys was significantly improved, but the saturation magnetization (Bs) was less than 1.5 T. To achieve higher Bs in Fe-based amorphous alloys, the Fe content should be maximized and the metalloid and alloying elements contents should be minimized, but it makes glass formation difficult. It is difficult to reveal the effect mechanism of Fe atoms in high Fe-content amorphous alloys, due to the complexity of the amorphous structure. The present work focuses on explores the structure-property correlations of high Fe-content Fe-B-Si-Hf multi-component glassy alloys with an amorphous structure model. A series of high Fe-content alloys with the composition of [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0, 1.5, 2, 2.5 and 3) was produced by adding Fe atoms to the ideal cluster formula, which is based on the composition with the best glass-forming ability of [Si-B2Fe7.7Hf0.3]Fe (Fe72.5B16.7Si8.3Hf2.5) for Fe-B-Si-Hf quaternary alloys. Liquid quench, thermal analysis and magnetic measurement results show that the critical rod size for glassy alloys gradually decreases from 2.5 mm to 1 mm as the number of Fe atoms increases from 0 to 2. The [Si-B2Fe7.7Hf0.3]Fe+Fe2 (Fe76.4B14.3Si7.1Hf2.2) bulk glassy alloy has a high saturation magnetization of 1.58 T and a low coercive force of 2.8 A/m. The decreasing of the glass transition temperature, the thermal stability, the glass-forming ability and the Curie temperature with increasing Fe content in Fe-B-Si-Hf glassy alloys was evaluated using a “dual-cluster” ({[Si-B2Fe7.7Hf0.3]+[Fe-Fe14]x/15}Fe) amorphous structure model. The result shows that the [Fe-Fe14] cluster from the α-Fe phase plays an important role in determining the properties change for this series high Fe-content Fe-B-Si-Hf glassy alloys.

Key wordscomposition design    Fe-B-Si-Hf bulk glassy alloy    soft magnetic property    "dual-cluster" model    structure-property correlation
收稿日期: 2016-07-05     
基金资助:国家自然科学基金项目Nos.51671045和51601073,国际热核聚变实验堆计划项目Nos.2013GB107003和2015GB105003,以及中央高校基本科研业务费项目No;DUT16ZD209
图1  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)系列棒状和条带样品的XRD谱
图2  直径为1 mm棒状[Si-B2Fe7.7Hf0.3]Fe+Fe2样品的TEM明场像和SAED谱
图3  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)系列非晶条带样品的DSC和DTA曲线
图4  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)非晶样品的玻璃态转变温度(Tg)、晶化开始温度(Tx)和约化玻璃转变温度(Trg)随x的变化关系
图5  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)非晶条带样品的磁化曲线和磁滞回线
图6  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)非晶样品的饱和磁化强度(Bs)和Curie温度(Tc)随x的变化关系
Cluster formulas x Corresponding dc / mm Tg / K Tx / K Tl / K Trg
composition
[Si-B2Fe7.7Hf0.3]Fe+Fe0 0 Fe72.5B16.67Si8.3Hf2.5 2.5 852 885 1458 0.584
[Si-B2Fe7.7Hf0.3]Fe+Fe1.5 1.5 Fe75.6B14.8Si7.4Hf2.2 1.0 842 864 1472 0.572
[Si-B2Fe7.7Hf0.3]Fe+Fe2 2 Fe76.4B14.3Si7.1Hf2.2 1.0 824 847 1461 0.564
[Si-B2Fe7.7Hf0.3]Fe+Fe2.5 2.5 Fe77.2B13.8Si6.9Hf2.1 <1.0 830 852 1515 0.548
[Si-B2Fe7.7Hf0.3]Fe+Fe3 3 Fe78.0B13.3Si6.7Hf2.0 <1.0 825 849 1521 0.542
表1  [Si-B2Fe7.7Hf0.3]Fe+Fex (x=0、1.5、2、2.5和3)系列非晶样品的团簇式对应的成分、临界尺寸dc、Tg、Tx、熔化结束温度(Tl)和Trg
图7  {[Si-B2Fe7.7Hf0.3]+[Fe-Fe14]x/15}Fe非晶合金的2维微观结构模型(图中[Si-B2(Fe,Hf)8]和[Fe-Fe14]团簇按类fcc堆垛,连接原子Fe则进入到团簇间的八面体间隙位)
[1] Egami T.Magnetic amorphous alloys: Physics and technological applications[J]. Rep. Prog. Phys., 1984, 47: 1601
[2] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets[J]. Prog. Mater. Sci., 1999, 44: 291
[3] Hasegawa R.Amorphous magnetic materials——A history[J]. J. Magn. Magn. Mater., 1991, 100: 1
[4] Inoue A, Shinohara Y, Gook J S.Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting[J]. Mater. Trans. JIM, 1995, 36: 1427
[5] Makino A, Kubota T, Chang C T, et al.Fe-metalloids bulk glassy alloys with high Fe content and high glass-forming ability[J]. J. Mater. Res., 2008, 23: 1339
[6] Liu F J, Yao K F, Ding H Y.Fe-based glassy alloys with high iron content and high saturation magnetization[J]. Intermetallics, 2011, 19: 1674
[7] Meng S Y, Ling H B, Li Q, et al.Development of Fe-based bulk metallic glasses with high saturation magnetization[J]. Scr. Mater., 2014, 81: 24
[8] Suryanarayana C, Inoue A.Bulk Metallic Glasses [M]. Boca Raton, FL: CRC Press, 2011: 460
[9] Miracle D B.A structural model for metallic glasses[J]. Nat. Mater., 2004, 3: 697
[10] Han G, Qiang J B, Li F W, et al.The e/a values of ideal metallic glasses in relation to cluster formulae[J]. Acta Mater., 2011, 59: 5917
[11] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the 'molecular' units of ideal metallic glasses[J]. Philos. Mag., 2014, 94: 2520
[12] Geng Y X, Wang Y M, Qiang J B, et al.Composition formulas of Fe-B binary amorphous alloys[J]. J. Non-Cryst. Solids, 2016, 432: 453
[13] Geng Y X, Wang Y M, Qiang J B, et al.Fe-B-Si-Zr soft magnetic bulk glassy alloys[J]. Intermetallics, 2015, 67: 138
[14] Geng Y X, Wang Y M, Wang Z R, et al.Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses[J].
[14] Mater. Des., 2016, 106: 69
[15] Geng Y X, Han K M, Wang Y M, Q et al. Composition design of Fe-B-Si-Ta bulk amorphous alloys based on cluster+glue atom model[J]. Acta Metall. Sin., 2015, 51: 1017
[15] (耿遥祥, 韩凯明, 王英敏等. 基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计[J]. 金属学报, 2015, 51: 1017)
[16] Geng Y X, Wang Y M, Qiang J B, et al.Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
[16] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459)
[17] Inoue A, Shen B L.Soft magnetic bulk glassy Fe-B-Si-Nb alloys with high saturation magnetization above 1.5 T[J]. Mater. Trans., 2002, 43: 766
[18] Inoue A, Shen B L.Formation and soft magnetic properties of Fe-B-Si-Zr bulk glassy alloys with high saturation magnetization above 1.5 T[J]. Mater. Trans., 2002, 43: 2350
[19] Miracle D B.The density and packing fraction of binary metallic glasses[J]. Acta Mater., 2013, 61: 3157
[20] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46: 2817
[21] Stillinger F H.Relaxation and flow mechanisms in "fragile" glass-forming liquids[J]. J. Chem. Phys., 1988, 89: 6461
[22] Ediger M D.Spatially heterogeneous dynamics in supercooled liquids[J]. Annu. Rev. Phys. Chem., 2000, 51: 99
[23] Tanaka H.Two-order-parameter model of the liquid-glass transition. II. Structural relaxation and dynamic heterogeneity[J]. J. Non-Cryst. Solids, 2005, 351: 3385
[24] Bakonyi I.Relevance of Fe atomic volumes for the magnetic properties of Fe-rich metallic glasses[J]. J. Magn. Magn. Mater., 2012, 324: 3961
[25] Durand J.Magnetic properties of metallic glasses [A]. Glassy Metals II[M]. Berlin, Heidelberg: Springer-Verlag, 1983: 343
[1] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[3] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[4] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[5] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[8] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[9] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[10] 王清 查钱锋 刘恩雪 董闯 王学军 谭朝鑫 冀春俊. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48(10): 1201-1206.
[11] 袁亮 羌建兵 庞厰 王英敏 王清 董闯. 源自Ni--Nb共晶团簇式的Ni-Nb-(Zr, Ta, Ag) 三元块体非晶合金成分设计[J]. 金属学报, 2011, 47(8): 1003-1008.
[12] 马仁涛 郝传璞 王清 任明法 王英敏 董闯. 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计[J]. 金属学报, 2010, 46(9): 1034-1040.
[13] 吴泽宇 郭胜锋 李宁 柳林. Co对Fe--B--Y--Nb块体非晶合金玻璃形成能力及软磁性能的影响[J]. 金属学报, 2009, 45(2): 249-252.
[14] 陈伟荣; 王清; 程旭; 张庆瑜; 董闯 . 基于团簇线的Fe-B-Y基五元块体非晶合金[J]. 金属学报, 2007, 43(8): 797-802 .
[15] 陈卫平; 萧淑琴; 王文静; 刘宜华 . 沉积态 (Fe88Zr7B5)0.97Cu0.03软磁合金薄膜的磁性和巨磁阻抗效应[J]. 金属学报, 2004, 40(12): 1295-1298 .